This research intent to evaluate formation starch resistant (RS) in flour pre cooks that at makes from banana type share utilize various method pre brew which variably. Banana type that is utilized as starch source is kepok's banana, Fur king, Jack fruit, Ambon and Horn. Process pre brew which is done is poaching, braising, oven, broil and frying that their at combine with refrigeration up to 24 refrigerator's deep hours, then drawned out by drying up and hulling. Result observation to point out that pre brew (instillation and refrigeration combine) increasing RS rate banana. Conduct pre best brew is refrigeration poaching, refrigeration braising, and refrigeration broil because gets to increase RS rate on well-nigh all banana type. Flour pre cooks Horn Banana and Jack Fruit King have to titrate resistant starch tall relative (6,38 – 11,73%) than another banana so is chosen as conduct best. Flour pre cooks it will evaluate its nutrient point utilize attempt mouse (bioassay) on succeeding research.

Key word: starch resistant, processing process, kepok's banana, Fur king, Jack fruit, Ambon and Horn.

PENDAHULUAN

Pernah pati resisten (RS) dalam gizi, akhir-akhir ini menjadi topik penelitian yang banyak mendapat perhatian dari para peneliti, karena erat hubungannya dengan kesehatan manusia. Asp (1995) menjelaskan bahwa terdapat beberapa jenis RS termasuk pati yang terperangkap secara fisik seperti dalam kacang-kacangan, granula pati yang tidak tergelatinisasi yang terdapat pada pisang dan kentang mentah, serta pati yang termodifikasi secara kimiai dan pemanasan kering.

Secara analitis, RS didefinisikan sebagai pati yang tahan terhadap dispersi didalam air mendidih dan hidrolisis oleh amilase pankreas dan pullulanase tetapi dapat didispersi oleh KOH dan dihidrolisis oleh amiloglukosidase (Marsono dan Topping, 1993).

Dalam beberapa dasawarsa terakhir ini, RS banyak diteliti terutama dari segi pembentukan dan aspek gizinya. RS dapat dihasilkan dari proses pengolahan (pemanasan dan pendinginan bahan berpati yang berulang-ulang), sifat alami pati (pati kentang, pisang dan bahan nabati tinggi amilosa lainnya) dan sifat fisik bahan berpati (ukuran partikel dan derajat hidrasi) dan sebagainya (Kingman dan Englyst, 1994). Klasifikasi pati resisten menurut Marsono (2001).
Tabel 1. Klasifikasi pati resisten

<table>
<thead>
<tr>
<th>Jenis Pati Resisten</th>
<th>Definisi</th>
<th>Contoh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RS-1</td>
<td>Pati yang secara fisik sulit dicerna (misalnya karena ukuran besar)</td>
<td>serealia utuh/digiling tidak halus</td>
</tr>
<tr>
<td>2. RS-2</td>
<td>Granula pati resisten</td>
<td>kentang dan pisang mentah</td>
</tr>
<tr>
<td>3. RS-3</td>
<td>Pati terterogradasi (resisten karena proses pengolahan)</td>
<td>corn flakes, roti tawar, kerupuk</td>
</tr>
<tr>
<td>4. RS-4</td>
<td>Pati termodifikasi</td>
<td></td>
</tr>
</tbody>
</table>

Marsono (2001)


Pisang termasuk buah yang mudah rusak (perishable), oleh karena itu banyak dilakukan proses pengolahan pisang untuk tujuan tertentu, misalnya meningkatkan nilai ekonominya, meningkatkan rasa dan memperpanjang umur simpannya. Pengolahan pisang secara tradisional antara lain dengan cara direbus, dikukus, digoreng/dibuat ceriping atau dibuat tepung.

Pendiniapan pati yang telah tergelatinisasi dapat mengubah struktur pati yang mengarah pada terbentuknya kristal baru yang tidak larut berupa pati terterogradasi. Gelatinisasi dan retrogradasi yang sering terjadi pada pengolahan bahan berpati dapat mempengaruhi kecernaan pati di dalam usus halus (Englyst dan Cummings, 1987).

Pada penelitian ini dipelajari pengaruh variasi pisang dan pengaruh pengolahan terhadap kadar pati resisten pisang. Hasil penelitian ini diharapkan dapat dikembangkan lebih lanjut sebagai makanan kesehatan untuk manusia terutama yang mengalami masalah pencernaan.

TUJUAN PENELITIAN

Penelitian ini bertujuan untuk mengetahui pengaruh cara pengolahan terhadap daya cerna pati (se cara in-vitro) pada 5 jenis pisang (pisang Kepok, Raja Bulu, Nangka, Ambon dan Tanduk).

METODE PENELITIAN

Bahan dan Alat

Bahan dasar dalam penelitian ini adalah 5 jenis pisang, yaitu pisang Kepok, Raja Bulu, Nangka, Ambon dan Tanduk yang diperoleh dari pasar-pasar tradisional di daerah Sidoarjo dan Surabaya.

Peralatan yang digunakan dalam penelitian ini adalah penci perebus, dandang, oven, alat pemanggang, wajan, kompor, loyang, refrigerator, water bath, tabung reaksi, pipet, erlenmeyer, beaker glass, timbangan analitik, sentrifuse, pH meter, vortex, spektrofotometer, dan alat-alat gelas untuk analisis kimia.

Pelaksanaan Penelitian

Pada ketiga jenis pisang dilakukan analisa bahan awal meliputi : kadar air, pati, amilosa, dan amilopektin serta analisa kadar pati resisten pada tepung pisang untuk digunakan sebagai pembanding.

Perlakuan Pengolahan pisang meliputi : (1) perebusan (suhu 100°C selama 15 menit), (2) perebusan & pendinginan (suhu 15°C selama 24 jam), (3) pengukusan (suhu 100°C selama 15 menit), (4) pengukusan dan pendinginan, (5) pengovenan (suhu 100°C selama 15 menit), (6) pengovenan & pendinginan, (7) pemanggangan (di atas api selama 15 menit), (8) pemanggangan & pendinginan,
Pengaruh Cara Pengolahan Terhadap Daya Cerna Pati (Rosida)

(9) penggorengan (suhu 200°C selama 15 menit), serta (10) penggorengan & pendinginan.

Pisang yang telah mengalami perlakuan pemasakan, dikeringkan, digiling dan diayak sehingga diperoleh tepung pramasak pisang dan dianalisis rendemen dan kadar pati resistennya untuk mengetahui pengaruh proses pengolahan pada pembentukan pati resisten.

HASIL DAN PEMBAHASAN
Karacteristik Kimia Tepung Kontrol
Hasil analisis kadar air, pati, amilosa, dan amilopektin pisang Kepok, Raja Bulu, Nangka, Ambon dan Tanduk dapat dilihat pada Tabel 2.

<table>
<thead>
<tr>
<th>Tabel 2. Komposisi kimia pisang (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komposisi</td>
</tr>
<tr>
<td>Air</td>
</tr>
<tr>
<td>Pati</td>
</tr>
<tr>
<td>Amilosa</td>
</tr>
<tr>
<td>Amilopektin</td>
</tr>
</tbody>
</table>

Kadar RS Tepung Mentah dan Pramasak
Untuk mengetahui pengaruh cara pengolahan terhadap kadar RS pada bahan mentah dan tepung pramasak dilakukan analisis RS dan hasilnya disajikan pada Tabel 3.

<table>
<thead>
<tr>
<th>Tabel 3. Kadar RS tepung mentah dan pramasak pisang Kepok, Raja Bulu, Nangka, Ambon dan Tanduk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Tepung kontrol</td>
</tr>
<tr>
<td>Tepung pramasak :</td>
</tr>
<tr>
<td>Rebus</td>
</tr>
<tr>
<td>Rebus + Dingin</td>
</tr>
<tr>
<td>Kukus</td>
</tr>
<tr>
<td>Kukus +</td>
</tr>
<tr>
<td>Dingin</td>
</tr>
<tr>
<td>Oven</td>
</tr>
<tr>
<td>Oven + Dingin</td>
</tr>
<tr>
<td>Panglek</td>
</tr>
<tr>
<td>Panglek +</td>
</tr>
<tr>
<td>Dingin</td>
</tr>
</tbody>
</table>

Ket: Rata-rata yang didampingi huruf berbeda berarti berbeda nyata (p ≤ 0,05)

Hasil analisis statistik pada masing-masing jenis pisang menunjukkan bahwa proses pengolahan berpengaruh nyata (p ≤ 0,05) pada kadar RS pisang.

Hasil analisa kadar RS menunjukkan pisang Ambon, Raja, dan Nangka mempunyai kadar RS yang tergolong tinggi (6,42 - 7,86 %). Tingginya kadar RS pada tepung mentah disebabkan oleh sifat alami granula pati yang resisten terhadap hidrolisis amilase (RS-tipe 2).

Menurut Kingman dan Englyst (1994), RS-tipe 2 menunjukkan pati yang tidak terhidrolisis karena struktur kristal dalam granula pati, misalnya granula pati kentang mentah dan pisang yang mempunyai struktur kristalin tipe B. Pada dasarnya semua jenis pisang mengandung RS-tipe 2, namun kandungan RS-tipe 2 ini bervariasi tergantung jenis pisang.
a. Pisang kepok

Gambar 1. Kadar RS tepung pisang kepok kontrol dan pra-masak dari berbagai perlakuan pengolahan

Dari Gambar 1 tersebut diperoleh hasil bahwa kadar RS pisang kepok menunjukkan akibat proses pengolahan. Peningkatan tertinggi terdapat pada pisang yang diolah dengan kombinasi pengovenan dan pendinginan sebesar 152,4%, yaitu dari 5,15% menjadi 7,85%.

b. Pisang Raja Bulu

Gambar 2. Kadar RS tepung mentah dan pra-masak pisang Raja

dari berbagai perlakuan pengolahan

Dari Gambar 2 tersebut diperoleh hasil bahwa kadar RS pisang Raja Bulu menunjukkan pada proses pengolahan (perebusan, pengukusan, pengovenan dan pemanggangan) namun kombinasi proses pengolahan dengan pendinginan akan meningkatkan kadar RS tepung pra-masak yang dihasilkan. Peningkatan tertinggi terdapat pada pisang yang diolah dengan kombinasi pemanggangan dan pendinginan sebesar 48,63%, yaitu dari 6,56% menjadi 9,75%.
c. Pisang Raja Nangka

Gambar 3. Kadar RS tepung mentah dan pra-masak pisang Raja Nangka dari berbagai perlakuan pengolahan

Dari Gambar 3 tersebut diperoleh hasil bahwa kadar RS pisang Raja Nangka sedikit menurun pada proses perebusan dan penggorengan, namun meningkat pada proses pengolahan lainnya. Peningkatan tertinggi terdapat pada pisang yang diolah dengan kombinasi pengukusan dan pendinginan sebesar 82,71%, yaitu dari 6,42% menjadi 11,73%.

d. Pisang Ambon

Gambar 4. Kadar RS tepung mentah dan pra-masak pisang Ambon dari berbagai perlakuan pengolahan

Hasil penelitian menunjukkan pisang Ambon mengandung kadar RS awal yang relatif tinggi (7,86 %) yang disebabkan oleh sifat alami granula pati yang resisten terhadap hidrolisis amilase (RS-tipe 2). Pada saat pengolahan dengan panas, proses pemanasan/ gelatinisasi akan mengubah sifat granula pati menjadi lebih mudah diserang enzim amilase (lebih mudah dicerna), sehingga proses pemanasan akan menurunkan kadar RS. Tetapi pemanasan disertai pendinginan pati (yang telah mengalami gelatinisasi) dapat mengubah struktur pati yang mengarah pada terbentuknya kristal baru yang tidak larut berupa pati teretrogradasi (retrograded starch). Sehingga kombinasi proses pengolahan dengan pendinginan akan meningkatkan kadar RS tepung yang dihasilkan (RS-tipe 3). Dari Gambar 4 tersebut diperoleh hasil bahwa peningkatan tertinggi terdapat pada pisang yang diolah dengan kombinasi pemanggangan dan pendinginan sebesar 114,12%, yaitu dari 7,86% menjadi 8,97%.

Menurut Schulz et al. (1993), RS-tipe 3 (retrograded starch) dapat terbentuk selama proses pemasakan dan RS-tipe 2 (akibat sifat alami pati yang resisten) dapat hilang akibat lepasnya barrier seluler dan kerusakan granula pati.
c. Pisang Tanduk

Gambar 5. Kadar RS tepung pisang tanduk kontrol dan pra-masak dari berbagai perlakuan pengolahan

Dari Gambar 4 tersebut diperoleh hasil bahwa kadar RS pisang Tanduk meningkat akibat proses pengolahan. Peningkatan tertinggi terdapat pada pisang yang diolah dengan kombinasi perebusan dan pendinginan sebesar 168,2%, yaitu dari 6,80% menjadi 11,44%.

Pisang Tanduk mempunyai kandungan RS yang relatif tinggi dibandingkan pisang jenis lain. Hal ini disebabkan pisang Tanduk mengandung kadar pati (37,0%) dan kadar amilosa (15,9%) yang relatif tinggi (Tabel 2), sehingga menghasilkan tepung pra-masak dengan kadar RS yang tinggi. Pati resisten yang dihasilkan akibat proses pengolahan (pemanasan dan pendinginan bahan berpati yang berulang-ulang) adalah RS-tipe 3.

Asp dan Bjorck (1992) menyatakan bahwa makin tinggi kadar amilosa pati, maka tinggi pula kadar pati resistenya. Granula pati yang kaya akan amilosa mempunyai kemampuan mengkristal yang lebih besar yang disebabkan oleh lebih intensitnya ikatan hidrogen, akibatnya pati tidak dapat mengembang/mengalami gelatinisasi sempurna pada waktu pemasakan sehingga tercarna lebih lambat.

Pati resisten yang dihasilkan akibat proses pengolahan (pemanasan dan pendinginan bahan berpati yang berulang-ulang) adalah RS-tipe 3. RS-tipe 3 berhubungan dengan agregat yang terbentuk oleh pemanasan dan dilanjutkan dengan pendinginan pati. Polimer linier amilosa teretrogradasi lebih cepat dan kuat daripada polimer bercabang amilopektin (Schulz et al., 1993).

KESIMPULAN

Hasil penelitian menunjukkan bahwa semua perlakuan pemasakan yang dikombinasikan pendinginan dapat meningkatkan kadar pati resisten. Namun demikian dipilih 3 kombinasi proses pemasakan yang menyebabkan kenaikan kadar RS pada hampir semua jenis pisang yaitu perebusan-pendinginan, pengukusan-pendinginan dan pemanggangan-pendinginan. Sedangkan jenis pisang yang dipilih adalah pisang Tanduk dan Raja Nangka yang mempunyai kadar pati resisten relatif tinggi dibandingkan pisang lainnya.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Direktorat Jenderal Pendidikan Tinggi yang telah membiayai penelitian ini melalui Program Penelitian Hibah Bersaing tahun 2007.
DAFTAR PUSTAKA


