ANALISA DAMPAK KEGAGALAN PROSES PRODUKSI TERHADAP KERUSAKAN PRODUK BAN DENGAN METODE FMEA (*FAILURE MODE AND EFFECT ANALYSIS*)

DI PT. GAJAH TUNGGAL, Tbk
TANGERANG

PROPOSAL SKRIPSI

Diajukan Oleh:

AGUNG ADITYA FAJERIN
0632010150

JURUSAN TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR
2010
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>iii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>vii</td>
</tr>
</tbody>
</table>

BAB I PENDAHULUAN

1.1 Latar Belakang ... 1
1.2 Perumusan Masalah ... 3
1.3 Tujuan Penelitian .. 3
1.4 Batasan Penelitian .. 3
1.5 Sistematika Penulisan ... 4

BAB II TINJAUAN PUSTAKA

2.1 Pengertian Mutu ... 6
2.2 Pengendalian Mutu .. 11
 2.2.1 Cara dan Derajat Yang Mempengaruhi Pengawasan Mutu 12
 2.2.1.2 Cara – Cara Menjalankan Pengawasan Mutu.......... 12
 2.2.1.3 Hal – Hal Yang Mempengaruhi derajat Pengawasan Mutu........ 12
2.3 Alat dan Teknik Perbaikan Mutu 14
 2.3.1 Flow Chart .. 14
 2.3.2 Brainstorming .. 15
BAB III METODE PENELITIAN

3.1 Lokasi dan Waktu Penelitian ... 34

3.2 Identifikasi dan definisi operasional Variable 34

3.2 Metode Pengumpulan data .. 38

3.3 Langkah – Langkah Pemecahan Masalah 39

3.3.1 Penjelasan

Langkah – Langkah Pemecahan Masalah 41
BAB IV ANALISA DAN PEMBAHASAN

4.1 Pengumpulan Data ... 89
 4.1.1 Deskripsi Spesifikasi Produk 89
 4.1.2 Identifikasi Kesesuaian Produk Berdasarkan Kecacatan Produk Oleh Pengawas Produksi 90

4.2 Pengolahan Data .. 95
 4.2.1 Define ... 96
 4.2.1.1 Identifikasi Obyek Penelitian 96
 4.2.2 Measure ... 97
 4.2.2.1 Critical To Quality (CTQ) 97
 4.2.3 Menentukan Defect Terbesar 98
 4.2.4 Menentukan Karakteristik Kualitas (CTQ) 99
 4.2.4.1 Proses Produksi Ban Bulan Januari 2010 99
 4.2.4.2 Proses Produksi Ban Bulan Februari 2010 100
 4.2.4.3 Proses Produksi Ban Bulan Maret 2010 101
 4.2.4.4 Proses Produksi Ban Bulan April 2010 102
 4.2.5 Baseline Kinerja .. 103
 4.2.5.1 Proses Produksi Ban Bulan Januari 2010 ... 103
 4.2.5.2 Proses Produksi Ban Bulan Februari 2010 ... 105
 4.2.5.3 Proses Produksi Ban Bulan Maret 2010 106
 4.2.5.4 Proses Produksi Ban Bulan April 2010 107

4.3 Analyse .. 109
 4.3.1 Analisa Kapabilitas Proses 109
4.4 Analisa Defect Menggunakan Metode Fishbone Diagram .. 111

4.4.1 Fishbone Blown Side Wall dan Blown Tread 112
 4.4.1.1 Penjelasan Fishbone Blown Side Wall Dan Blown Tread .. 113

4.4.2 Fishbone Undercure .. 116
 4.4.2.1 Penjelasan Fishbone Undercure 117

4.4.3 Fishbone Foreign Material .. 120
 4.4.3.1 Penjelasan Fishbone Foreign Material 121

4.4.4 Fishbone Narrow Bead.. 123
 4.4.4.1 Penjelasan Fishbone Narrow Bead 124

4.5 Analisa Defect Menggunakan
Metode Failure Mode And Effect Analysis 125

4.5.1 Nilai Severity .. 139

4.5.2 Nilai Occurance .. 149

4.5.3 Nilai Detection.. 155

4.5.4 Risk Priority Number ... 164

4.5.5 Risk Priority Number ... 171
 4.5.5.1 RPN Defect Blown Side Wall 171
 4.5.5.2 RPN Defect Undercure 172
 4.5.5.3 RPN Defect Foreign Material 172
 4.5.5.4 RPN Defect Blown Tread 173
 4.5.5.5 RPN Defect Narrow Bead 174

4.5.6 Recommended Action .. 174
4.6 Improve .. 183

4.6.1 Menentukan Prioritas ... 184

4.6.1.1 Prioritas Perbaikan Defect Blown Side Wall

Dan Blown Tread .. 184

4.6.1.2 Prioritas Perbaikan Defect Undercure 186

4.6.1.3 Prioritas Perbaikan

Defect Foreign Material .. 187

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan .. 188

5.2 Saran ... 190
DAFTAR TABEL

Tabel 2.1 Definisi FMEA untuk Rating Occurrence 31
Tabel 2.2 Definisi FMEA untuk Rating Severity .. 31
Tabel 2.3 Definisi FMEA untuk Rating Detectability 32
Tabel 3.1 Syarat penandaan ban luar sepeda motor .. 41
Tabel 3.1 Syarat penandaan ban luar sepeda motor .. 41
Tabel 2.1 Definisi FMEA untuk Rating Occurrence 31
Tabel 2.2 Definisi FMEA untuk Rating Severity .. 31
Tabel 2.3 Definisi FMEA untuk Rating Detectability 32
Tabel 3.1 Syarat penandaan ban luar sepeda motor .. 41
Tabel 2.1 Definisi FMEA untuk Rating Occurrence 31
Tabel 2.2 Definisi FMEA untuk Rating Severity .. 31
Tabel 2.3 Definisi FMEA untuk Rating Detectability 32
Tabel 3.1 Syarat penandaan ban luar sepeda motor .. 41
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar 2.1</th>
<th>Siklus Kualitas ...</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 2.2</td>
<td>Check Sheet ...</td>
<td>16</td>
</tr>
<tr>
<td>Gambar 2.3</td>
<td>Pareto Chart ...</td>
<td>17</td>
</tr>
<tr>
<td>Gambar 2.4</td>
<td>Fish Bone Diagram ...</td>
<td>18</td>
</tr>
<tr>
<td>Gambar 2.5</td>
<td>Histogram ..</td>
<td>19</td>
</tr>
<tr>
<td>Gambar 2.6</td>
<td>Scatter Diagram ...</td>
<td>20</td>
</tr>
<tr>
<td>Gambar 2.7</td>
<td>Stratifikasi ...</td>
<td>20</td>
</tr>
<tr>
<td>Gambar 2.8</td>
<td>Control Chart ...</td>
<td>21</td>
</tr>
<tr>
<td>Gambar 2.9</td>
<td>Peta Pengendali Mutu Proses Statistik Data Variabel...............</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 2.10</td>
<td>Peta Pengendalian Mutu Proses Statistik Data Atribut..............</td>
<td>28</td>
</tr>
<tr>
<td>Gambar 2.11</td>
<td>Rating Umum Untuk FMEA ...</td>
<td>30</td>
</tr>
<tr>
<td>Gambar 3.1</td>
<td>Kerangka Metode Penelitian ..</td>
<td>38</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tabel Tally sheet ... 21</td>
</tr>
<tr>
<td>2.2</td>
<td>Tabel Check Sheet ... 22</td>
</tr>
<tr>
<td>2.3</td>
<td>Stratifikasi... 25</td>
</tr>
<tr>
<td>2.4</td>
<td>Rating umum untuk FMEA ... 35</td>
</tr>
<tr>
<td>2.5</td>
<td>Definisi FMEA Untuk Rating Occurrence 35</td>
</tr>
<tr>
<td>2.6</td>
<td>Definisi FMEA Untuk Rating Severity 36</td>
</tr>
<tr>
<td>2.7</td>
<td>Definisi FMEA Untuk Rating Detectability 37</td>
</tr>
<tr>
<td>2.8</td>
<td>Syarat Penandaan Ban Luar Sepeda Motor.......................... 40</td>
</tr>
<tr>
<td>4.1</td>
<td>Total Produksi ... 90</td>
</tr>
<tr>
<td>4.2</td>
<td>Data cacat ban luar sepeda motor (IRC) Januari – April 2010 ... 92</td>
</tr>
<tr>
<td>4.3</td>
<td>Ranking data Cacat ban luar sepeda motor (IRC) Januari – April 2010 ... 93</td>
</tr>
<tr>
<td>4.4</td>
<td>Data proses dan Lima defect tingkatan teratas (Pcs)........ 97</td>
</tr>
<tr>
<td>4.5</td>
<td>Data Lima defect Yang Menempati Tingkatan Teratas.(Pcs)....... 97</td>
</tr>
<tr>
<td>4.6</td>
<td>Data Prosentase defect (Pcs).. 98</td>
</tr>
<tr>
<td>4.7</td>
<td>Data Scrap Proses Produksi (Pcs) 99</td>
</tr>
<tr>
<td>4.8</td>
<td>Data Scrap Proses Produksi Ban (Pcs) 100</td>
</tr>
<tr>
<td>4.9</td>
<td>Data Scrap Proses Produksi Ban (Pcs) 101</td>
</tr>
<tr>
<td>4.10</td>
<td>Data Scrap Proses Produksi Ban (Pcs) 102</td>
</tr>
</tbody>
</table>
4.11 DPMO dan *Sigma* pada proses Produksi ban Bulan Januari 2010.............. 104
4.12. DPMO dan *Sigma* pada proses Produksi ban Bulan Februari 2010 106
4.13. DPMO dan *Sigma* pada proses Produksi ban Bulan Maret 2010 107
4.15. Rekapan Nilai Kapabilitas Proses Produksi Ban 110
4.16 Pembuatan Process Flow Chart dan Risk Asessment
 Tread Extruding... 121
4.17. Pembuatan Process Flow Chart dan Risk Asessment
 Bias Cutting .. 129
4.18. Pembuatan Process Flow Chart dan Risk Asessment
 Bead Gromet .. 131
4.19. Pembuatan Process Flow Chart dan Risk Asessment
 Tire Building ... 135
4.20. Pembuatan Process Flow Chart dan Risk Asessment
 Tire Curing ... 137
4.21 Nilai *Severity Blown Side Wall* 139
4.22. Nilai *Severity Undercure* ... 143
4.23. Nilai *Severity Foreign Material* 144
4.24. Nilai *Severity Blown Tread* ... 145
4.25. Nilai *Severity Narrow Bead* ... 148
4.26 Nilai Occurance Blown Side Wall 149
4.27. Nilai Occurance Undercure 151
4.28. Nilai Occurance Foreign Material 152
4.29. Nilai Occurance Blown Tread 153
4.30. Nilai Occurance Narrow Bead 155
4.31 Nilai Detection Blown Side Wall 156
4.32. Nilai Detection Undercure 159
4.34. Nilai Detection Blown Tread 161
4.35. Nilai Detection Narrow Bead 164
4.36 Nilai Risk Priority Number Defect Blown Side Wall ... 165
4.37. Nilai Risk Priority Number Defect Undercure 167
4.38. Nilai Risk Priority Number Defect Foreign Material 168
4.39. Nilai Risk Priority Number Defect Blown Tread 169
4.40. Nilai Risk Priority Number Defect Narrow Bead 171
4.41 Recommended Action untuk Defect Blown SideWall...... 175
4.42. Recommended Action untuk Defect Undercure 178
4.43. Recommended Action untuk Defect Foreign Material ... 179
4.44. Recommended Action untuk Defect Blown Tread 180
4.45. Recommended Action untuk Narrow Bead 183
4.46 Nilai RPN yang ≥ 100 .. 184
4.47. Prioritas Perbaikan

 Defect Blown Side Wall dan Blown Tread 184
4.48. Prioritas Perbaikan Defect undercure 186
4.49. Prioritas Perbaikan *Defect Foreign Material* 187
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Siklus Kualitas</td>
<td>11</td>
</tr>
<tr>
<td>2.2. Contoh Pareto Diagram</td>
<td>23</td>
</tr>
<tr>
<td>2.3. Contoh Histogram</td>
<td>23</td>
</tr>
<tr>
<td>2.4. Contoh Fishbone diagram</td>
<td>25</td>
</tr>
<tr>
<td>2.5. Contoh Control Chart</td>
<td>26</td>
</tr>
<tr>
<td>2.6. Konstruksi Ban roda dua</td>
<td>38</td>
</tr>
<tr>
<td>2.7. Penulisan Ukuran Ban Roda Dua</td>
<td>41</td>
</tr>
<tr>
<td>2.8. Penulisan Cara Metrik</td>
<td>41</td>
</tr>
<tr>
<td>2.9. Proses Produksi Ban</td>
<td>44</td>
</tr>
<tr>
<td>2.10. Flowchart proses Extruding</td>
<td>45</td>
</tr>
<tr>
<td>2.11. Compound sheet</td>
<td>46</td>
</tr>
<tr>
<td>2.12. Compound Tread OES</td>
<td>47</td>
</tr>
<tr>
<td>2.13. Tread</td>
<td>49</td>
</tr>
<tr>
<td>2.14. Flowchart Proses Bias Cutting</td>
<td>51</td>
</tr>
<tr>
<td>2.15. Ply</td>
<td>53</td>
</tr>
<tr>
<td>2.16. Flowchart Proses Bead Grommet</td>
<td>56</td>
</tr>
<tr>
<td>2.17. Bead</td>
<td>60</td>
</tr>
<tr>
<td>2.18. Joint Over Lap</td>
<td>60</td>
</tr>
<tr>
<td>2.19. Flowchart Proses Building</td>
<td>61</td>
</tr>
<tr>
<td>2.20. Roll Venting</td>
<td>64</td>
</tr>
<tr>
<td>2.21. Green Tire</td>
<td>64</td>
</tr>
</tbody>
</table>
2.22. Flowchart Proses curing... 67
2.23. Tire.. 70
3.1. Kerangka Metode Penelitian.. 85
4.1. Gambar Ban Luar sepada Motor... 90
4.2. Histogram Total Produksi Plant B, H, I (Januari – April)............... 91
4.3. Histogram Jumlah Produk Cacat Ban Luar sepada Motor
Bulan Januari - April 2010.. 94
4.4. Diagram Pareto Jumlah Produk Cacat Ban Luar sepada Motor
Bulan Januari - April 2010.. 95
4.5. Diagram Pareto Lima Defect Urutan Teratas................................. 96
4.6. Diagram Pareto Jenis Cacat (defect) ban...................................... 99
4.7. Diagram Pareto (defect) jenis scrap pada proses produksi ban
(Januari2010).. 100
4.8. Diagram Pareto (defect) jenis scrap pada proses produksi ban
(Febuar12010).. 101
4.9. Diagram Pareto (defect) jenis scrap pada proses produksi ban
(Maaret2010).. 102
4.10. Diagram Pareto (defect) jenis scrap pada proses produksi ban
(April2010)... 103
4.11. Fishbone Diagram
Defect Blown Ssde Wall dan Blown Tread....................................... 112
4.12. Fishbone Defect Undercure.. 116
4.13. Fishbone Defect Foreign Material.. 120
4.14. Fishbone Defect Narrow Bead... 123
ANALISA DAMPAK KEGAGALAN PROSES PRODUKSI TERHADAP
KERUSAKAN PRODUK BAN DENGAN METODE FMEA
(Failure Mode and Effect Analysis)
(Studi Kasus di PT. Gajah Tunggal, Tbk)

Agung Aditya Fajerin
Jurusan Teknik Industri
FTI – UPN “Veteran” Jawa Timur

ABSTRAK
Kualitas merupakan rangkaian keseluruhan karakteristik dan
keistimewaan dari suatu produk atau jasa dalam memuaskan sebagian atau
keseluruhan kebutuhan dari konsumen. Konsumen sebagai pemakai produk
semakin kritis dalam memilih atau memakai produk oleh karena itu keadaan ini
mengakibatkan peranan kualitas semakin penting.

Permasalahan yang terjadi di PT. Gajah Tunggal, Tbk ini adalah
tingginya tingkat defect produk ban luar sepeda motor dengan merk IRC.
meskipun perusahaan sudah menerapkan pengendalian yang terkendali. Akibat
relatif tingginya tingkat defect ini sangat mempengaruhi ban IRC oleh karena itu
perlu adanya pengendalian kontrol kualitas yang diintegrasikan dengan metode
FMEA yang bertujuan sebagai solusi untuk mengatasi permasalahan perusahaan
saat ini.

Tujuan dari penelitian ini adalah untuk mengidentifikasi faktor-faktor
yang mempunyai pengaruh signifikan terhadap kualitas ban IRC sehingga
nantinya secara optimal dapat diketahui faktor apa saja yang mengurangi kualitas
ban IRC serta dapat menekan jumlah defect yang terjadi. Untuk pengendalian
kualitas ban IRC digunakan metode FMEA dengan bantuan alat kontrol statistika
Dengan pengukuran tingkat defect tersebut maka nantinya didapatkan baseline
kinerja tingkat output yang menggambarkan tingkat DPMO serta Kapabilitas
Sigma selama satu bulan.

Hasil penelitian, Dengan menggunakan metoda fish bone diagram dan
PFMEA, didapatlah kemungkinan-kemungkinan penyebab dari kegagalan proses
tersebut. Hal ini kemudian dijadikan dasar untuk menentukan langkah – langkah
antisipasi dari kegagalan produksi tersebut.

Keywords : Defect, FMEA,
BAB I
PENDAHULUAN

1.1. Latar Belakang Masalah

Bangsa Indonesia pada masa sekarang ini tengah memasuki dunia perindustrian. Sistem pasar bebas yang telah disetujui oleh beberapa negara sudah dimulai, hal ini menyebabkan sistem perdagangan antar negara yang semula dikenai oleh biaya yang tinggi sudah tiada lagi. Dengan semakin terbuka dan bebasnya system perdagangan tersebut, membuat perusahaan – perusahaan yang mempunyai modal besar, mutu baik, dan system yang baik dari berbagai negara akan mulai memasuki dan merebut pasar perindustrian di negara kita.

PT. Gajah Tunggal Tbk. Khususnya Plant B, H, dan I sebagai salah satu perusahaan yang bergerak di bidang industri manufaktur dengan salah satu produk yang dihasilkan adalah ban sepeda motor baik ban luar maupun ban dalam sepeda motor (Motorcycle Tire and Tube) yang berorientasi pada local maupun export. Tire (ban luar sepeda motor) memiliki fungsi yang sangat penting untuk sepeda motor.

Permasalahan PT Gajah Tunggal adalah Untuk menghasilkan produk berkualitas tinggi dalam jumlah besar dan continue (mass production), Perusahaan melakukan pengendalian kualitas dengan langkah awal berupa pengidentifikasian kecacatan produk agar dapat mengurangi kesalahan proses seminimal mungkin. Pada kenyataannya, dalam proses produksi, Tire masih terjadi kecacatan yang cukup banyak. Dengan tingkat kecacatan rata-rata antara 1% - 5% dalam satu bulan produksi. Semua itu biasanya kurang mendapat perhatian serta
pengendalian, sehingga menurunkan kualitas produk dan tentu saja merugikan perusahaan. Banyak industri yang melalaiakan jumlah kecacatan produk terutama perusahaan yang memproduksi barang. Mereka berpikir bahwa kecacatan yang terjadi hanya kecil namun tidak sadar dari sedikitnya cacat yang terjadi akan mengurangi kualitas dari produk yang dihasilkan. Di dalam memproduksi produk tersebut pihak produksi adalah pihak yang mungkin terkait mengalami kesalahan sehingga menimbulkan cacat. Sehingga dalam hal ini perlu suatu analisa tentang kecacatan yang dapat mengurangi kesalahan-kesalahan seminimal mungkin.

FMEA (Failure Mode Effect Analysis) adalah sebuah teknik yang memberikan sebuah metodologi untuk memudahkan peningkatan proses suatu produk dengan meneliti setiap elemen dari komponen, produk atau proses produksi agar tidak terjadi proses design ulang.

Penggunaan metode *Failure Mode And Effect Analysis* itu sendiri akan dapat mengidentifikasi dan menganalisa cacat produk yang ada di PT. Gajah Tunggal,Tbk Tangerang untuk menentukan faktor penyebab kecacatan dan menganalisanya faktor kecacatan tersebut sehingga kualitas produk yang baik akan didapatkan dan tujuan perusahaan dalam menghasilkan produk yang sesuai permintaan konsumen akan tercapai dengan baik dan memuaskan.

1.2. **Perumusan Masalah**

Berdasarkan latar belakang tersebut diatas masalah yang dihadapi perusahaan sekarang ini dapat dirumuskan sebagai berikut:
“Berapa tingkat kecacatan dan faktor yang menjadi penyebab terjadinya kecacatan produk pada proses produksi Tire di PT. Gajah Tunggal, Tbk. Tangerang?”

1.3. **Batasan Masalah**

Untuk mencapai tujuan yang dinginkan dalam penelitian maka perlu dilakukan pembatasan masalah yang dihadapi, yaitu:

2. Data produksi yang digunakan diambil dari data selama bulan Januari – April tahun 2010.
3. Tidak dilakukan analisa biaya
4. Dalam pembuatan tire diasumsikan sudah berjalan normal.

1.4. **Asumsi**

Dalam menyelesaikan penelitian untuk mencapai hasil yang diinginkan digunakan asumsi-asumsi sebagai berikut:

1. Proses produksi tidak mengalami perubahan pada saat penelitian dilakukan.
2. Dalam pembuatan tire diasumsikan sudah berjalan normal.

1.5. **Tujuan Penelitian**

Tujuan penelitian yang dilakukan di PT. Gajah Tunggal. Tbk Tangerang adalah:

1.6. **Manfaat Penelitian**

Adapun manfaat yang dapat diperoleh dari penelitian ini adalah sebagai berikut:

1. **Bagi Perusahaan**

Dengan adanya penerapan metode *Failure Mode And Effect Analysis (FMEA)*, diharapkan pihak perusahaan dapat mengurangi jumlah *defect* (cacat) produk yang dialami selama ini, serta bukti konsistensi perusahaan dalam penerapan standard mutu produk untuk memuaskan keinginan konsumen.

2. **Bagi Peneliti**

Dapat menambah pengetahuan dan pengalaman dengan menerapkan penggunaan metode *Failure Mode And Effect Analysis (FMEA)* dalam permasalahan *defect* (cacat) yang ada di dalam proses produksi suatu perusahaan.

3. **Bagi Universitas**

Memberikan referensi tambahan dan perbendaharaan perpustakaan agar berguna di dalam mengembangkan ilmu pengetahuan dan juga berguna sebagai pembanding bagi mahasiswa dimasa yang akan datang.
1.7. Sistematika Penulisan

Sistematika penulisan laporan penelitian sesuai dengan sistematika penulisan yang ditetapkan oleh pihak fakultas dalam memudahkan penelitian adalah sebagai berikut :

BAB I PENDAHULUAN

Bab ini meliputi latar belakang masalah, perumusan masalah, pembatasan masalah, asumsi-asumsi, tujuan penelitian, manfaat penelitian dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bab ini berisi tentang studi kepustakaan yang berhubungan dengan masalah yang diteliti dan dapat digunakan sebagai acuan teori dan dasar dari pemecahan masalah yang dilakukan, yaitu dengan menggunakan Metode Failure Mode and Effect analysis.

BAB III METODE PENELITIAN

Bab ini dibahas tentang lokasi dan waktu penelitian, identifikasi operasional variabel, metode pengumpulan data, pengolahan data dan langkah – langkah pemecahan masalah.

BAB IV HASIL DAN PEMBAHASAN

Bab ini berisi tentang data-data yang diperlukan dalam analisa masalah berupa data primer dan data sekunder yang menggunakan
metode *Failure Mode And Effect Analysis* yang kemudian data tersebut diolah dan analisa untuk mendapatkan hasil lebih lanjut.

BAB V KESIMPULAN DAN SARAN

Bab ini berisi tentang kesimpulan yang diperoleh dari hasil pengumpulan data dan pengolahan data, serta saran-saran sebagai bahan pertimbangan perusahaan.

DAFTAR PUSTAKA

LAMPIRAN