ANALISIS FAKTOR – FAKTOR YANG MEMPENGARUHI TERHADAP KEKUATAN TARIK BENANG KARUNG PLASTIK PADA MESIN EXTRUDER DENGAN MENGGUNAKAN METODE TAGUCHI DI PT. PERKEBUNAN NUSANTARA XI (PERSERO) PK. “ROSELLA BARU“ SURABAYA

SKRIPSI

Oleh:

ISMANU HUDHA
06 32010 092

JURUSAN TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS PEMBANGUNAN NASIONAL “VETERAN”
JAWA TIMUR
2010
<table>
<thead>
<tr>
<th>BAB I</th>
<th>PENDAHULUAN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Rumusan Masalah</td>
<td>3</td>
</tr>
<tr>
<td>1.3.</td>
<td>Batasan Masalah</td>
<td>3</td>
</tr>
<tr>
<td>1.4.</td>
<td>Tujuan Penelitian</td>
<td>4</td>
</tr>
<tr>
<td>1.5.</td>
<td>Asumsi</td>
<td>4</td>
</tr>
<tr>
<td>1.6.</td>
<td>Manfaat Penelitian</td>
<td>5</td>
</tr>
<tr>
<td>1.7.</td>
<td>Sistematika Penulisan</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAB II</th>
<th>TINJAUAN PUSATAKA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Pengertian Plastik</td>
<td>7</td>
</tr>
<tr>
<td>2.2.</td>
<td>Definisi Karung Plastik</td>
<td>10</td>
</tr>
<tr>
<td>2.3.</td>
<td>Mesin dan Peralatan</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>Outer Bag</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Inner Bag</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3.</td>
<td>Inserting</td>
<td>13</td>
</tr>
<tr>
<td>2.3.4.</td>
<td>Balling Press</td>
<td>13</td>
</tr>
<tr>
<td>2.4.</td>
<td>Definisi dan Konsep Kualitas</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1.</td>
<td>Pengendalian kualitas</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Tujuan Pengendalian kualitas</td>
<td>17</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Kegiatan Pengendalian kualitas</td>
<td>17</td>
</tr>
<tr>
<td>2.5.</td>
<td>Pengertian dan Prinsip Dasar Desain Eksperimen</td>
<td>20</td>
</tr>
</tbody>
</table>
BAB III METODE PENELITIAN

3.1. Lokasi dan Waktu Penelitian .. 44
3.2. Identifikasi dari Definisi Operasional 44
 3.2.1. Variabel Bebas ... 44
 3.2.2. Variabel Tak Bebas ... 45
3.3. Langkah-langkah Pemecahan Masalah 46
3.4. Metode Pengumpulan Data .. 58
3.5. Metode Pengolahan Data ... 59
 3.5.1. Perhitungan Rata-rata, Variansi dan Ratio S/N 59
 3.5.2. Menghitung Jumlah Kuadrat Total 59
 3.5.3. Menghitung Sum Of Square ... 59
 3.5.4. Menghitung Sum Of Square Error 60
 3.5.5. Membuat Tabel ANOVA ... 60
 3.5.6. Pooling Up faktor dengan SS terendah 60
 3.5.7. Perhitungan Persen Kontribusi .. 60
 3.5.8. Perhitungan Interval Kepercayaan 60
 3.5.8.1. Interval Kepercayaan – untuk Kondisi Level
 Faktor Eksperimen .. 60
3.5.8.2. Interval Kepercayaan – untuk Taksiran
Rata-rata .. 60
3.5.8.3. Interval Kepercayaan – untuk Eksperimen
Konfirmasi ... 60
3.6. Metode Analisa Data ... 61

BAB IV ANALISA HASIL DAN PEMBAHASAN
4.1. Pengumpulan Data .. 62
 4.1.1. Perumusan Karakteristik Kualitas 62
 4.1.2. Diagram Sebab Akibat ... 62
4.2. Identifikasi Faktor-Faktor Yang Berpengaruh 63
4.3. Metode Taguchi ... 63
 4.3.1. Penetapan Faktor Terkendali dan Level 64
 4.3.2. Perhitungan Derajat Kebebasan Level Faktor 64
 4.3.3. Pemilihan Tabel Orthogonal Array dan Penempatan
 Faktor .. 67
4.4. Pelaksanaan Percobaan ... 68
4.5. Analisa Hasil Percobaan ... 69
 4.5.1. Kombinasi Level dan Faktor Optimum 69
 4.5.1.1. ANOVA Rata-Rata Kekuatan tarik benang karung
 plastik ... 71
 4.5.1.2. Pooling Up Faktor ... 74
 4.5.1.3. Prediksi Rata-Rata Kekuatan tarik benang karung
 plastik ... 83
 4.5.2. Pengaruh Level dari Faktor Terhadap Rasio S/N Kekuatan
 tarik benang karung plastik .. 84
 4.5.2.1. Menghitung Rasio S/N ... 84
 4.5.2.2. Kombinasi Level Faktor Optimum 86
 4.5.2.3. ANOVA Rasio S/N Kekuatan tarik benang karung
 plastik ... 88
 4.5.2.4. Pooling Up Faktor ... 90
4.5.2.5. Prediksi Rata-Rata Kekuatan tarik benang karung plastik... 98
4.6. Eksperimen Konfirmasi ..100
 4.6.1. Perhitungan Nilai Rata-Rata dan Ratio S/N
 Eksperimen Konfirmasi ..100
 4.6.2. Hasil Pengolahan Data Eksperimen Konfirmasi101
4.7. Analisa dan Pembahasan ...102

BAB V KESIMPULAN DAN SARAN
 5.1. Kesimpulan ..104
 5.2. Saran ..105

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR TABEL

Tabel 2.1 Perkembangan Plastik ... 10
Tabel 2.2 Orthogonal Array standard dari Taguchi 30
Tabel 2.3 Orthogonal Array L$_{27}(3^{13})$... 31
Tabel 2.4 L$_{4}$ Triangular table .. 33
Tabel 2.5 ANOVA faktor A .. 36
Tabel 3.1 Faktor Terkendali Yang Berpengaruh Pada Kekuatan Tarik Benang ... 51
Tabel 3.2 Penetuan Level Faktor .. 52
Tabel 3.3 Perhitungan Derajat Bebas Total ... 53
Tabel 4.1 Faktor Terkendali dan Level ... 64
Tabel 4.2 Orthogonal Array L$_{27}$ (3^{13}) ... 67
Tabel 4.3 Data Hasil Percobaan Uji Kekuatan Tarik Benang Karung Plastik .. 68
Tabel 4.4 Respon rata-rata masing-masing faktor .. 70
Tabel 4.5 Pemecahan Interaksi ... 71
Tabel 4.6 ANOVA Rata – rata kekuatan tarik benang karung plastik 73
Tabel 4.7 ANOVA Penggabungan I ... 74
Tabel 4.8 ANOVA Penggabungan II ... 77
Tabel 4.9 ANOVA Penggabungan III ... 79
Tabel 4.10 Persen Kontribusi ... 82
Tabel 4.11 Hasil Perhitungan rasio S/N .. 85
Tabel 4.12 Respon S/N rasio masing-masing faktor 86
Tabel 4.13 Pemecahan Interaksi AxB .. 87
Tabel 4.14 ANOVA Rasio S/N Rasio kekuatan tarik benang karung plastik. 89
Tabel 4.15 ANOVA Penggabungan I .. 90
Tabel 4.16 ANOVA Penggabungan II ... 93
Tabel 4.17 ANOVA Penggabungan III ... 95
Tabel 4.18 Persen Kontribusi ... 98
Tabel 4.19 Hasil Percobaan Konfirmasi .. 100
Tabel 4.20 Interpretasi Hasil Ukuran Kekuatan tarik benang karung plastik ... 102
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Gambar Judul</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Perkembangan Plastik</td>
<td>...</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Quality Circle</td>
<td>...</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Diagram Sebab Akibat</td>
<td>...</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Notasi dari Orthogonal Array L₈</td>
<td>...</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>L₄ Linear graphs</td>
<td>...</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart Langkah-langkah Pemecahan Masalah</td>
<td>...</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagram sebab akibat kekuatan tarik benang karung plastik pada mesin extruder</td>
<td>...</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear graph L₂₇ OA</td>
<td>...</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Standar Linear graph L₂₇ OA</td>
<td>...</td>
<td>66</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Lampiran I-A Gambaran Umum Perusahaan
Lampiran II-A Tabel Hasil Uji Kekuatan Tarik Benang Karung Plastik
Lampiran II-B Perhitungan Rata-rata Pengaruh Faktor Kekuatan Tarik Benang Karung Plastik
Lampiran II-C Perhitungan pemecahan interaksi AxB rata-rata
Lampiran II-D Perhitungan Rata–rata Sum of Square (SS) pada masing–masing faktor
Lampiran II-E Perhitungan Rasio S/N Masing–masing Faktor
Lampiran II-F Tabel Hasil Rasio S/N Uji Kekuatan Tarik Benang Karung Plastik
Lampiran II-G Perhitungan Rata-rata Rasio S/N Pengaruh Faktor Kekuatan Tarik Benang Karung Plastik
Lampiran II-H Perhitungan pemecahan interaksi AxB rata-rata
Lampiran II-I Perhitungan Rata–rata Sum of Square (SS) pada masing–masing faktor
Lampiran III-A Pengerjaan pengolahan melalui aplikasi Software Program Minitab versi 14
Lampiran IV-A Grafik Respon Faktor dan Interaksi Terhadap Rata-rata Kekuatan Tarik Benang Karung Plastik
Lampiran IV-A Grafik Respon Faktor dan Interaksi Terhadap Rasio S/N Kekuatan Tarik Benang Karung Plastik
Lampiran V Hasil Pengolahan data melalui aplikasi Program Minitab 14
ABSTRAKSI

Faktor-faktor terkendali tersebut berpengaruh baik terhadap nilai rata-rata maupun variabilitas kekuatan tarik benang plastik. Sebagai karakteristik kualitas Larger-the-better pada kekuatan tarik benang karung plastik yang terjadi diharapkan mampu membuat kombinasi faktor-faktor yang optimal yang diinginkan oleh perusahaan.

Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berpengaruh terhadap kekuatan tarik benang karung plastik serta menentukan kombinasi dan komposisi bahan baku karung plastik untuk menghasilkan kekuatan tarik benang karung plastik yang optimum. Rancangan eksperimen yang digunakan adalah rancangan eksperimen dengan metode taguchi dengan model matriks orthogonal array L_{27} (3^{13}). Kemudian dilakukan eksperimen konfirmasi yang merupakan penerapan setting optimal eksperimen taguchi. Analisis data dilakukan berdasarkan pengoptimalan Signal to Noise Ratio (rasio S/N) dan Analysis of Variance (ANOVA) dengan interval kepercayaan 90%.

Dari Hasil analisa menunjukkan bahwa kombinasi optimal adalah Polypropylene (PP) pada level 3 sebanyak 125 Kg (A3), interaksi antara Polypropylene (PP) pada level 3 sebanyak 125 Kg dengan Calsium Carbonat (CaCo3) pada level 3 sebanyak 25 Kg (A3B3), dan Suhu Cylinder pada level 3 sebesar 269°C (D3). Hasil eksperimen konfirmasi prediksi rata-rata kekuatan tarik benang karung plastik yang optimum adalah 3,720 kgforce ± 0,184 dan rasio S/N 11,479 dB ± 0,214

Kata kunci: Taguchi, Orthogonal Array, Signal to Noise Ratio, Analysis of variance.
BAB I
PENDAHULUAN

1.1 Latar Belakang

Situasi industri yang semakin kompetitif ditambah lagi kondisi lingkungan yang berubah dengan cepat menuntut setiap pelaku ekonomi maupun bisnis untuk mampu bergerak cepat, mengantisipasi keadaan dan mampu melihat tendensi keadaan persaingan usaha jauh ke depan. Apalagi untuk saat ini dalam menghadapi pasar bebas yang akan diberlakukan, setiap industri dituntut untuk menghasilkan produk dengan kualitas yang terbaik agar tetap mampu bertahan dan saling bersaing dengan industri-industri sejenis. Dengan keadaan seperti ini perusahaan dituntut untuk dapat menghasilkan produk yang berkualitas sesuai dengan keinginan konsumen.

Sebagai produsen mempunyai kepentingan dalam hal meningkatkan kualitas serta mengurangi adanya cacat produk atau pengerjaan ulang (rework) dari produk yang dihasilkan. Dalam kenyataan di lapangan masih terjadi penyimpangan kualitas dari kekuatan tarik benang karung plastik yang disebabkan
oleh faktor bahan baku dan setting mesin extruder antara lain Polypropylene (PP), Calcium Carbonat (CaCO3), kecepatan screw, dan suhu Cylinder. Dimana kekuatan tarik benang terhadap proses drafting (penarikan) menjadi rendah, sehingga benang menjadi mudah putus. Hal ini dapat mengakibatkan masalah yang berhubungan dengan spesifikasi kualitas produk.

Metode Taguchi merupakan suatu prosedur percobaan yang disebut dengan nama perancangan parameter (desain parameter) yang menyatakan bahwa nilai-nilai atau setting dari beberapa variabel yang dapat dikendalikan harus dapat ditetapkan agar variasi yang disebabkan oleh beberapa variabel gangguan dapat diminimalkan. Dengan kelebihan dapat meminimalkan variasi diantara unit–unit yang diproduksi dengan cara membuat nilai rata–rata dan karakteristik kualitas sedekat mungkin ke nilai target.

Mengingat perlunya menjaga kualitas kekuatan tarik benang karung plastik yang dihasilkan, maka diperlukan desain eksperimen untuk mengumpulkan informasi dalam pencapaian kondisi ideal untuk mengurangi kerugian kualitas secara kuantitatif. Perlu diketahui bahwa keberhasilan proses yang terjadi di mesin extruder ditentukan oleh banyak faktor yang kesemuanya tidak bisa dikendalikan. Penggunaan metode Taguchi pada penelitian ini diharapkan mampu memperbaiki kualitas produk sehingga diperoleh kekuatan tarik benang karung plastik yang maksimal.
1.2 Rumusan Masalah

Agar perumusan masalah ini lebih terarah dan mudah dipahami sesuai dengan tujuan pembahasan, maka permasalahan yang akan diamati dalam penelitian ini adalah:

"Faktor–faktor apa saja yang berpengaruh terhadap kekuatan tarik benang karung plastik dan bagaimana kombinasi optimal dari faktor–faktor dan level–level yang berpengaruh terhadap kekuatan tarik benang karung plastik."

1.3 Batasan masalah

Agar penelitian yang dilakukan dapat lebih terarah dan masalah yang dibahas tidak luas, maka perlu diberikan batasan masalah. Batasan masalah tersebut adalah sebagai berikut:

1. Penelitian yang dilakukan di PTPN XI (Persero) PK Rosella Baru Surabaya ini di fokuskan pada mesin extruder dengan hasil produk karung plastik.
2. Pemilihan faktor didasarkan pada faktor-faktor yang memberikan pengaruh signifikan terhadap kekuatan tarik benang karung plastik.
3. Perbaikan kualitas hanya pada karakteristik kualitas kekuatan tarik benang karung plastik.
4. Karakteristik kualitas yang digunakan adalah Larger-the-better.
5. Tidak melakukan pada tingkat biaya.
1.4 **Tujuan Penelitian**

Untuk lebih mengarahkan dan memperjelas arah serta maksud dari penelitian adalah:

1. Mengidentifikasi faktor-faktor yang berpengaruh terhadap kekuatan tarik benang karung plastik.
2. Menentukan kombinasi dan komposisi bahan baku karung plastik untuk menghasilkan kekuatan tarik benang karung plastik yang optimum.

1.5 **Asumsi**

Selama penelitian yang dilaksanakan di perusahaan, penulis mendapatkan beberapa asumsi, antara lain:

1. Kondisi fisik lingkungan pekerja yang baik.
2. Jenis bahan baku yang digunakan untuk masing-masing karakteristik kekuatan tarik benang karung plastik adalah sama, diasumsikan dalam keadaan baik dan selalu tersedia.
3. Urutan proses produksi baik dan tetap.
5. Peralatan maupun fasilitas lainnya berjalan normal selama proses produksi berlangsung.
1.6 Manfaat Penelitian

1. Sebagai masukan informasi kepada perusahaan yang bersangkutan dengan harapan dapat digunakan sebagai bahan pertimbangan keputusan bagi perusahaan untuk meningkatkan kualitas produk.

2. Sebagai sumber informasi ilmiah untuk menambah wawasan dan pemahaman tentang masalah peningkatan kualitas di perusahaan, bagaimana merancang dan menganalisis suatu eksperimen dengan menggunakan metode Taguchi.

3. Memberikan informasi tentang hasil produksi pada akhir proses produksi sehingga dapat diketahui suatu keadaan apakah proses tersebut masih dalam keadaan terkendali atau tidak.

5. Menambah literatur yang berguna bagi dunia pendidikan dan studi banding bagi mahasiswa untuk acuan pendidikan selanjutnya.

1.7 Sistematika Penulisan

Sistematika penulisan dimaksudkan untuk mempermudah usaha pemahaman keseluruhan materi dan permasalahan pokok dalam skripsi ini. Sistematika penulisan tersebut adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi mengenai latar belakang yang merupakan gambaran dari pokok permasalahan, kemudian perumusan masalah,
pembatasan masalah, tujuan penelitian, asumsi, manfaat penelitian, dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bab ini berisikan tentang studi literatur yang digunakan sebagai acuan teori yang mendukung pemecahan masalah.

BAB III METODE PENELITIAN

Bab ini berisikan langkah–langkah pemecahan masalah yang akan dilakukan serta metode yang akan dilakukan dalam pengolahan data.

BAB IV ANALISA DAN PEMBAHASAN

Bab ini berisi tentang pengolahan data yang didapat sesuai dengan langkah–langkah dalam metode penelitian, melakukan analisis, dan pembahasan hasil penelitian.

BAB V KESIMPULAN DAN SARAN

Bab ini merupakan penutup penulisan yang berisikan kesimpulan dari hasil pembahasan dan saran bagi perusahaan untuk meningkatkan kualitas kekuatan tarik benang.

DAFTAR PUSTAKA

LAMPIRAN