CHARACTERIZATION OF EGCG COMPOUND USE 1H NMR SPECTRUM ON CAMELLIA SINENSIS (L.) CALLUS

Sutini 1, Tatik W2, Sutiman B3, R. Verpoorte 4

1Agrotecnology Department of Agriculture Faculty UPN ‘Veteran’, Surabaya-East Java.
2Agronomy Department of Agriculture Faculty, Brawijaya University, Malang-East Java
3Biology Department of FMIPA, Brawijaya University, Malang-East Java
4Plant Metabolomics Department – Leiden University. Netherlands

Email: tien_basuki@yahoo.com

ABSTRACT

Epigallocatechin gallate (EGCG) are secondary metabolite on Camellia sinensis L as obesity preventing agent. The characterisation of this plant use 1H NMR spectroscopy often have been done, however characterisation on callus both drying with open air and without drying is rare. The purpose of this research is characterize EGCG of tea callus via process both drying with open air and vacuum. Tis method use 1H NMR spectroscopy. The result show that EGCG character of tea callus via process both drying with open air and vacuum are significantly different.

Key note: Epigallocatechin gallate, 1H NMR, Camellia sinensis L callus

INTRODUCTION

Epigallocatechin gallate (EGCG) bioactive is available on tea (Camellia sinensis L). The advantage of this are anti obesity, anti cancer, anti diabetic, anti cholesterol, anti bakterial, cardiovaskuler disease and osteoporosis prevention agent. Many function of tea on industry that is beverage, cosmetic, pharmacy, and food (Hartoyo, 2003). EGCG bioactive compound structure as figure 1, is one of flavonoid derivat of phenol on tea (Camellia sinensis L.). Structure that have many hydroxi/ OH easy to bond free radical so EGCG identified have multi function in health.

![Figure 1. EGCG structure (Thomson, 2004).](image-url)
Peter W.L. (2000) say that EGCG harvested on winter and summer season different on EGCG value. This is relevant with Caffin, N., D’Arcy, B., Yao L., Rintou, N. (2004) note that EGCG amount of tea leaves is increasing harvested on summer (May), however decreasing on winter (November).

In general, this research is aimed at developing production of EGCG technology in vitro by callus culture technique. Characteristics of EGCG are: binding with several biologic matrix and heavy metals, catalyzing electron transportation, and trapping free radicals. Four characteristics above made it a bioactive agent. Hence secondary metabolite of EGCG must be characterized with 1H NMR both on drying and undrying process to improve the product quality.

Purpose:
Characterize EGCG of tea callus with process both drying in open air and with vacuum.

MATERIALS AND METHOD

1H NMR spectroscopy 500 MHz (Bruker, Jerman), 1.5 mL-ependorff tube mL -2 mL, 5 mm NMR tube, centrifuge, Ultrasonic, vortex, vacuum dry, metanol-deuterium (CH$_3$OH-d$_4$), buffer KH$_2$PO$_4$ in D$_2$O (pH 6.0) containing 0.01% (b / b) TSP, aqua bidestilata.

Extraction
Preparation metanol-deuterium (CH$_3$OH-d$_4$) without add standard internal, buffer KH$_2$PO$_4$ in D$_2$O (pH 6.0) containing 0.01% (b / b) TSP. Measure gentle powder of 25-50 mg tea callus that both with drying in open air and vacuum. Then add CH$_3$OH-d$_4$ (without any internal standard), KH$_2$PO$_4$ buffer in D$_2$O (pH 6.0) containing 0.1% (w/w) TSP, to 2 mL-ependorff tube. This solution vortex for 1 minute at room temperature and then ultrasonication for 5-20 minute at room temperature. This solution centrifuge at room temperature for 5 – 20 minute using microtube centrifugator (13000 rpm, room temperature). Transfer supernatant (more than 1 mL) to 1.5 mL-ependorff tube.

If more centrifugation is necessary centrifugator using microtube centrifugator (13000 rpm, 1 minute, room temperature). Then transfer 800 mL of supernatant to 5 mm NMR tube.
Characterisation Use 1H Nmr

The study done use 500 spectrometer MHz 1H NMR (Bruker, Jerman) completed by cryoprobes. Chemical shift (δ) is measured on ppm, with standard referency use tetrametil silen zero ppm, with chemical shift range between 4.52-7.08.

RESULTS AND DISCUSSION

The liquid of green browny pure extraction, then spectrum observed. EGCG spectra of tea callus proceed both with drying in open air and wet tea callus in vacumand standart as Figure 1.

Spectrum 1H NMR 500 MHz on methanol deuterium solvent, (Table 1) showed that chemical shift (δ ppm) and space between two spin/kopling constanta (J in Hz). Proton position are structure from EGCG resonance on H-6, H-8, H-2', H-5', H-6' (Markam, et al, 1994). Chemical shift and coupling constanta on proton position resonance for EGCG show that tea callus with drying in vacum almostly same with standart. This show that tea callus characterization with drying vacum can identify EGCG character, that not happen in tea callus with drying in open air. Proton position of EGCG resonance on chemical shift (δ) and coupling constanta (J), tea callus with open air drying can not show the character because that compound oxydated by air.

Based on Nathalie V, G. research (2001) that flavonoid oxydation caused by temperatur, UV light, and ion Cu$^{2+}$ then change to be unstabile quinon into sulfonat. Using 1H NMR spectroscopy, can characterize proton of EGCG. This is relevant to Moco research (2007) show that 1H NMR can identify flavonoid compound on tomato plant. Then, Tarachiwin L. Et al., 2007 note that 1H NMR spectroscopy combined with multivariat analysis can descript seconday metabolit profile.

However using 1H NMR spectroscopy, have disavantage that is: 1). Relatively low sensitivity than using other analysis technique such as MS, 2). Can produce more than one ambiguous spectra, 3). Chemical shift influenced by the surrounding chemical environment. There is many ways to solve that is: 1). Combine 2D spectrum (two dimension) NMR, 2). This research use standart data comparation refer to the same sovent material.
Figure 1. Spektrum 1H NMR 500 MHz on CH$_3$OH-d$_4$ solvent from: (A) tea callus with vacuum drying, (B), standart , (C) tea callus with drying in open air.

Table 1. Proton position δ and J EGCG , tea callus drying in open air, tea callus Drying with vacuum and standart

<table>
<thead>
<tr>
<th>Proton Position</th>
<th>δEGCG drying in open air, (J in Hz)</th>
<th>δEGCG with vacuum, (J in Hz)</th>
<th>δEGCG with standart (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-2</td>
<td>-</td>
<td>4.90 (s)</td>
<td>4.90 (s)</td>
</tr>
<tr>
<td>H-3</td>
<td>-</td>
<td>5.50 (s)</td>
<td>5.51 (s)</td>
</tr>
<tr>
<td>H-4α</td>
<td>-</td>
<td>2.97 (dd)</td>
<td>2.97 (dd)</td>
</tr>
<tr>
<td>H-4β</td>
<td>-</td>
<td>2.83 (dd)</td>
<td>2.83 (dd)</td>
</tr>
<tr>
<td>H-6</td>
<td>-</td>
<td>5.94(1.79)</td>
<td>5.93(1.79)</td>
</tr>
<tr>
<td>H-8</td>
<td>-</td>
<td>5.94(1.79)</td>
<td>5.93(1.79)</td>
</tr>
<tr>
<td>H-2'</td>
<td>6.34(s)</td>
<td>6.49(1.80)</td>
<td>6.48(1.80)</td>
</tr>
<tr>
<td>H-5'</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H-6'</td>
<td>6.40(s,)</td>
<td>6.49(1.80)</td>
<td>6.48(1.80)</td>
</tr>
<tr>
<td>H-2"</td>
<td>-</td>
<td>6.95(s)</td>
<td>6.93 (s)</td>
</tr>
</tbody>
</table>
CONCLUSION

Achieve character from EGCG body that is 1H NMR as H-6, H-8, H-2’, H-5’, H-6’ (Markam, et al, 1994). Observation on chemical shift located between 5.94 – 6.49, this value based on existence range of EGCG compound. This relevant with study by McLeod (2010) that aromatic bonding area located on 5.8 – 8.8

ACKNOWLEDGEMENT:

Thanks to Prof. Dr. Rob. Verpoorte and staff of Department Plant Metabolomics, Leiden University, Netherlands for help and attention.

REFERENCES

Question:

1. What the structure resonance in EGCG?

Answer:

1. Acquired characteristic from EGCG structure resonance on H that H – 6, H – 8, H – 2, H – 5, H – 7, etc.