COMPARISON OF BENDING STRENGTH CONCRETE FLOOR PLATE CFRP REINFORCING WITH WIRE MESH REINFORCING AN ALTERNATIVE THE BEST CHOICE FOR CONCRETE REINFORCING FLOOR PLATES

Made Dharam Astawa1) Nyoman Dita P Putra2) dan Eddy Poernomo3)

1) Lecturer Department of Civil Engineering, Faculty of Engineering, UPN "Veteran" East Java-Indonesia
2) Lecturer at Faculty of Sicial and Polytical Science, UPN "Veteran" East Java-Indonesia.
3) Email 1)maedawa@yahoo.com, mdastawa@upnjatim.ac.id

ABSTRACT

Floor plate is one of the major structural elements of the building frame structure, as loadbearing gravity directly consisting of dead load, self weight and live load. As a result of this gravity loads will occur bending moment and will cause a sizeable deflection. To eliminate deflections occurring and to improve the flexural strength as resistance to the gravity loads, generally done by providing reinforcement as a reinforcement in the slab.

The development of Carbon Fiber Reinforced Polymer (CFRP) and Wire-mesh reinforcing has opened up new opportunities to provide rigidity and improve the flexural strength concrete frame structure of the building in general, in particular on the concrete floor plate elements. To select the material flexural the concrete floor slabs, researchers are trying mengkonparasi use of CFRP and Wiremesh as reinforcement bending, the specimen concrete slab dimensions panjang1200 mm, width 500 mm and thickness of 120 mm, with the number of each of the three specimens of concrete plate bertulangan CFRP, and 3 specimens bertulangan Wire-mesh. Once the concrete specimen minimum age of 28 days, and then tested in experimental powerful flexibility of a laboratory with monotonic bending loads, the loading process increased gradually until the specimen fractured, and setrusnya sampi collapse. The data is then analyzed test results of the flexural strength of the two types of reinforcement (CFRP and Wiremesh), and then compared the results which is better.

Analysis results of the best flexural strength and mechanically efficient than alternative two kinds of material that is applied to the concrete slab specimens will be selected as the material for the reinforcement of concrete floor plate in this study.

Keywords: CFRP, Wiremesh, comparative flexural capacity, the best alternative.

INTRODUCTION

Improvement and retrofitting on concrete structures often do both at the time of construction of a structure or in a structure that is already in operation. The purpose of repair is to restore the structure to its original state both strength capacity and functionality, or increase the load capacity structure for switching function so that it can carry a larger load.

Several studies of concrete retrofitting, among others, retrofitting bending in concrete beams using CFRP material plate (Mohsen Shahawy et al, 2001), Installation of FRP Reinforcement near the surface for Bending Retrofitting Concrete Structures (Hacha R. E and Rizkalla S. H, 2004), column Concrete reinforced with CFRP (Marolop Tua Sianipar, 2009), Planning Plate Concrete Flooring Grid Reinforcement wiremesh using materials Add fly ash (Zaenuri 2010), the use of CFRP Laminate to increase the shear strength Beams reinforced Concrete (Alferjani MBS, et al, 2013), Reinforced Concrete plate structures (Aprelia R, 2014), Technology of concrete reinforcing steel (Ikhsan M, 2015).

To get the improvement and retrofitting of concrete structures are optimal, then it should be done three important stages, namely the investigation, evaluation and implementation. The third stage is very important to do, and no one is more important stage than the other stages (Harton, 2008). Because without a good investigative, then we can not evaluate it properly, so without a proper evaluation, the improvement and reinforcement is done can not achieve the goals that have been set, the next without good execution, then all stages investigation and evaluation was done properly and well be meaningless.

STUDY LITERATURE

The following refers to several studies that have been done by previous researchers.

Tensile Strength Research of CFRP.

Astawa M. D., et al (2015), doing research CFRP tensile strength. Manufacturing procedures follow the provisions of the American Standard Testing Materials (ASTM) D 3039 / D 3039M-00, with an odd number minimum of 3 samples. In this study, 7 pieces of samples with sizes as listed in the following table.

| Table 1. Dimensions and number of CFRP specimen. |
| No. | Name/Type | Function | Thick | Wide | Long |

201
Standard actual dimensions of 1.20 X 15.00 X 250.00 mm, but the size is listed in the table can not be precise as standard. The reason is precisely because of the difficulty to form flat plate composed of fibers, the fiber edge plate plates apart so often can not be precise as wide as the width of 15.00 mm, however the size of the width is still within tolerance (Figure 1).

Perform the test specimen in one by one using the testing machine Pull Universal Testing Machine (UTM) with a capacity of 500 kN. From 7 Specimens tested worked well as 5 specimen, while the two specimen failure due to a slip at the end of the specimen clamps.

Although there were 2 Specimens that have failed, but still meet the requirements of the amount due has been more than 3 Specimen and odd number. Document the testing process is shown in Figure 2.

After the specimen was removed from the testing machine UTM, reconfiguration of the conditions had been severed, forming fibers from CFRP can be seen clearly, and documentation can be seen in Figure 3, below.

![Figure 3. Archives CFRP specimen that had broken (Astawa, M.D, at al, 2015)](image)

Pull powerful look of of CFRP Specimens from laboratory test results Pull melting an average of \( f_y = 3073.60 \text{ N / mm}^2 \), the increase of the standard manufacturer quite significant a value of \( f_y = 2520 \text{ N / mm}^2 \). Thus it can be concluded that the CFRP is used in the field is very strong because it has a capacity above from the analysis that has been done.

What is lacking is disqualification strain (strain) that only reached an average of 4.614% is still below 9.00% according to the provisions of ASTM 615-2000.

Near-Surface-Mounted Fiber-Reinforced Polymer Reinforcements for Flexural Strengthening of Concrete Structures.

The use of Near Surface Mounted FRP reinforcement is currently emerging as a promising strengthening technique and a valid alternative to externally bonded FRP reinforcement for increasing the flexural strength of reinforced concrete members (Rafat El-Hacha, Sami H, 2004). Rizkalla. The structural performance of reinforced concrete beams strengthened in flexure with NSM FRP reinforcement was examined and compared with beams strengthened with externally bonded FRP reinforcement. The behavior prior to and after cracking, ultimate carrying capacity, and modes of failure of all tested beams are discussed.
in this paper. The variables investigated were the type of fibers, including carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) thermoplastic, and the configuration of the FRP reinforcement, including reinforcing bars and strips. The effectiveness of NSM FRP reinforcing bars and strips was examined and compared with externally bonded FRP strips using the same material and axial stiffness. The findings of this research provide data for the design guidelines currently under consideration by ACI Committee 440 for the NSM FRP strengthening technique. Test specimens and setup A total of eight, simply supported, 2.7 m (9 ft) long, concrete T-beams were constructed and tested under a monotonically increasing concentrated load applied at midspan of the beam. The test setup of aT-beam specimen is shown in Figure 5.

![Figure 5. Test setup, beam details, and instrumentation of beam specimens (Hacha & Sami, 2004)](image)

Test matrix One beam was tested without strengthening (B0) and served as the control specimen for comparison purposes. Four beams (B1, B2, B3, and B4) were strengthened with different NSM FRP systems using CFRP reinforcing bars, two types of CFRP strips, and thermoplastic GFRP strips. Three beams (B2a, B2b, and B4a) were strengthened with different externally bonded CFRP and GFRP strips. A summary of these beams is given in Table 2.

### Table 2: Test matrix for T-beam specimens

<table>
<thead>
<tr>
<th>Beam no.</th>
<th>FRP strengthening system</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>No strengthening</td>
</tr>
<tr>
<td>B1</td>
<td>One NSM CFRP reinforcing bar</td>
</tr>
<tr>
<td>B2</td>
<td>Two Type 1 NSM CFRP strips</td>
</tr>
<tr>
<td>B3</td>
<td>Two Type 2 NSM CFRP strips</td>
</tr>
<tr>
<td>B4</td>
<td>Five NSM GFRP thermoplastic strips</td>
</tr>
<tr>
<td>B2a</td>
<td>Two Type 1 externally bonded CFRP strips</td>
</tr>
<tr>
<td>B2b</td>
<td>Two Type 1 externally bonded CFRP strips</td>
</tr>
<tr>
<td>B4a</td>
<td>Five externally bonded GFRP thermoplastic strips</td>
</tr>
</tbody>
</table>

Installation of the NSM FRP reinforcing bars and strips begins by making a series of grooves with specified dimensions cut into the concrete cover in the longitudinal direction at the tension side of the beam specimens. A special concrete saw with a diamond blade was used to cut the grooves with the dimensions shown in Figure 6.

![Figure 6. Groove dimensions for various NSM FRP strengthening systems. (Hacha & Sami, 2004)](image)

Installation of externally bonded FRP reinforcements: To ensure a good, strong bond, the bottom surface of the concrete beams was prepared by grinding until the coarse aggregates were exposed, then cleaned by washing and airbrushing to remove dust or debris and fine particles. Care was taken to ensure that the resulting concrete surface after grinding was uniform. Following cleaning, a uniform 2 mm (0.078 in.) thin layer of the two-part epoxy-based adhesive was applied by palette knife to the bottom surface of the concrete beam. The FRP strips were placed in position on the concrete surface and pressed onto the epoxy by hand. To ensure a good bond with concrete, a uniform pressure was applied along the entire length of the strips, AU-shaped wrap CFRP sheet with 100 mm (4.0 in.) width was placed around the web of the concrete beams at both ends of the externally bonded FRP flexural reinforcements, with the direction of the fibers perpendicular to the longitudinal axis of the member, to improve the anchorage of the FRP strengthening system (Fig. 6). The externally bonded CFRP strips (Type I) were placed at the bottom surface of the concrete beams (B2a and B2b) with spacing in between equal to twice the width of the strip (Fig. 3). The externally bonded GFRP strips were placed side by side at the bottom surface of the concrete beam (B4a) leaving 25 mm (1.0 in.) from each side of the beam (Figure 7).

![Figure 7. Externally bonded FRP strengthening systems. (Hacha & Sami, 2004)](image)
A summary of significant test results describing the flexural behavior of all tested beams is presented in Table 3. The concrete compressive strength when the beams were tested was determined according to ASTM C 39-01, using three standard concrete cylinders and ranged between 48 MPa (6962 psi) for Beams BO, BI, B3, and B4, and 57 MPa (8267 psi) for Beams B2, B2a, B2b, and B4a. Beam BO was tested without strengthening and used as a control specimen for comparison purposes to evaluate the improvement in flexural strength provided by the various NSM and externally bonded FRP reinforcements. The unstrengthened control beam failed by crushing of the concrete after yielding of the steel tension reinforcement. Load-midspan deflection of beams strengthened with NSM CFRP reinforcing bar and strips, can be seen in Fig. 8.

![Figure 8. Load-midspan deflection of beams strengthened with NSM CFRP reinforcing bar and strips (Hacha & Sami, 2004)](image)

**Installation method of Wiremesh.**

Wiremesh an iron material that is made from plain or threaded wire rod formed sheet with a box of 15 cm x 15 cm long x 2.1 m 5.4m having a thickness of 4-10 mm are used for the casting floor reinforcement (Triyanto, 2016). Wiremesh a material that is also less familiar to people because usually casting Indonesia using begel assembled themselves. For those who understand the building using a wiremesh be an option without a doubt, because wiremesh designed to help speed and simplify development, in terms of strength and efficiency, wiremesh superior to other materials. Suppose the casting use 10mm plain stirrup, because the plain reinforcement quality classification bjd 24 while wiremesh with quality bjt 40, so it is better to use wiremesh kekutan. Financially use concrete steel is more expensive than on wiremesh, one meter begel spending concrete steel wiremesh worth 99.000 being only 50.000. Judging from the application installation begel require a long time and requires a lot of people, while wiremesh pengaplikasiananya faster, requiring more less labor. Wiremesh installation method shown in Figure 9, 10, 11 and 12.

![Figure 9. Wiremesh installation pattern on concrete floor plate (Trianto, 2016)](image)

![Figure 10. Wiremesh Reinforcement on footstool for beams (Trianto, 2016)](image)

![Figure 11. Installation joining methods wiremesh (Trianto, 2016)](image)

![Figure 12. Installation Connection Details wiremesh (Trianto, 2016)](image)

**METODOLOGY**

**Analysis of Statics Concrete Floor Plate.**

Numerical analyzes were performed with Software Analaysis Structure Program (SAP 2000). After creating a modeling plate, then to input load and property, then its output results can be displayed as follows.
Figure 13. Shell Element Stress and Internal Forces

Figure 14. Discrete Floor Plate

Figure 15. Flexure deformation of span Ly and Lx direction

(a) M-11 Direction of long spans (L_y)

(b) M-22 Direction of short span (L_x)

Research Laboratory

Testing needed in the laboratory are:

1. Tensile Test Wire-mesh, using a piece of wire-mesh material along the 600 mm, then tested for tensile strength (f_y) using the UTM test machine. Yield tensile strength test results if successful properly according to the American Standard Testing Materials (ASTM, 2000), will yield curve as follows:

Figure 16. Curve of Model specimen tensile Rebar (ASTM, 2000)

2. Bending test concrete plate with CFRP reinforced, cross-sectional dimensions of plate: thickness 12 cm, width 50 cm, length 100 cm. Reinforcement plate mounted CFRP each second rod towards landscape Lx and Ly. Use 3-point load of ≥ 22 kN in accordance with the results of the analysis. Schematic drawing as follows:

Figure 17. Concrete Plates Specimens with CFRP reinforcement

Figure 18. Test Set-up Specimen CFRP Reinforcing

Reinforced concrete slab bending test Wiremesh M8, cross-sectional dimensions of the same plate with reinforced CFRP plate. Wiremesh reinforced concrete plate configuration as shown below:

Figure 19. Concrete plate Specimens with Wiremesh Reinforcing
RESULTS AND DISCUSSION.

Flexure strength test results.

Flexural strength test performed by following the provisions of JIS A 5335-1987, samples of CFRP reinforced concrete slab and Wiremesh each 3 pieces, by loading a centralized (Uniflexure Load), using a machine press UTM test, carried out gradually with the increase in each stage 2kN up to plates cracked and then collapsed. To measure the deflection, using a dial gauge is installed in the middle of the span, and log machine through reading tool UPM Transducer. Evaluation of the results of the bending test, taken the average value of all the test results, the evaluation includes bending strength and deflection. Data flexural strength test results are listed in Table 4.7, as follows:

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ultimate Loads (kN)</th>
<th>Crack Loads (kN)</th>
<th>Average Loads (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP</td>
<td>20,40</td>
<td>17,50</td>
<td>21,47</td>
</tr>
<tr>
<td></td>
<td>20,70</td>
<td></td>
<td>20,70</td>
</tr>
<tr>
<td></td>
<td>30,10</td>
<td>16,70</td>
<td></td>
</tr>
<tr>
<td>Wiremesh</td>
<td>29,50</td>
<td>18,00</td>
<td>30,00</td>
</tr>
<tr>
<td></td>
<td>30,40</td>
<td>17,80</td>
<td></td>
</tr>
</tbody>
</table>

Relations load and deflection of the CFRP concrete slab can be seen in the following Table 4.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Crack Loads (kN)</th>
<th>Ultimate Loads (kN)</th>
<th>Deflection (mm)</th>
<th>Ductility δult/Δcr (δ, rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP</td>
<td>17,66</td>
<td>25,94</td>
<td>2.78</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>17,46</td>
<td>29,82</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Average</td>
<td>17.17</td>
<td>29.43</td>
<td>2.96</td>
<td>3.00</td>
</tr>
</tbody>
</table>

The relationship Curve of load-deflection bending test results wiremesh reinforced concrete slab can be seen in Figure 22. Initinal cracks of 3 in succession specimens, for specimen 1 at load 16,38 kN with a deflection of 3.61 mm, the specimen 2 at the load 17,66 kN with a deflection of 2.78 mm and specimens 3 at load 17,46 kN with a deflection of 2.50 mm. Reaches maximum load respectively, specimen 1 at load 29.53 kN with a deflection of 11.11 mm, the specimen 2 at load 29.84 kN with a deflection of 7.78 mm and specimens 3 at load 29.82 kN with a deflection of 7.78 mm.
DISCUSSION

Behavior and flexural capacity of reinforced concrete slab with CFRP less effective, because the ultimate load is significantly lower than planned expenses in the amount of 22.86 kN. CFRP experiencing first concrete slab crack of 19.19 kN, ultimate load of 21.06 kN, the ultimate moment of 5.69 KNm, deflection 2.60 mm and a flexural strength of 3.51 MPa.

The use of CFRP plates as external reinforcement on concrete without steel reinforcement plate is less effective, because the ultimate load that occurs fell by 28.44% against the concrete slab wiremesh. The decline also occurred on a deflection by 13.11%, amounting to 28.44% ultimate moments and bending strength of 28.44%. That's because the debonding failure or release of the bond between the concrete with CFRP to CFRP not work optimally as a composite structure. But the installation of CFRP on a plate can inhibit the first crack as evidenced by the increasing burden of 11.76% first crack at Wiremesh plate.

Behavior and flexural capacity of reinforced concrete slab WIREMESH good enough, it can be seen with increasing load on the ultimate load that is equal to 22.86 kN planned. Wiremesh experiencing first concrete slab crack of 17.17 kN, ultimate load of 29.43 kN, the ultimate moment of 7.95 KNM, a deflection of 3.00 mm and a flexural strength of 4.91 MPa.

CONCLUSION

After analysis and discussion, it can be deduced that that the results of laboratory research menunjukakan reinforced concrete plate WIREMESH better results compared with CFRP plate reinforced concrete. Thus the alternative choice as the best reinforcement concrete slab between two options, CFRP and wiremesh, is a reinforced concrete plate Wiremesh.

REFERENCES
2. ACI 364.1R, 1993,“Guide for Evaluation of Concrete Structures Prior to Rehabilitation”
6. Astawa M. D., et al, 2015, "Tensile Strength Test of Carbon Fiber Reinforced Polymer (CFRP) as an..."
alternative Reinforcement Substitution Bending on Concrete Structures " Presiding The Research Month LPPM-UPN "Veteran" East Java, Surabaya, December 8, 2015


15. Reference of Sika’s, "Strengthening and Repair Projects" whole project from the year 2000-2013.


