Table of Content

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword by the Vice Chancellor, Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Foreword by the Dean, Faculty of Food Science and Technology</td>
</tr>
<tr>
<td>Foreword by the IFRC 2017 Chairman</td>
</tr>
</tbody>
</table>

IFRC 2017 Proceedings

Plenary 2

Supercritical Fluid Technology for Food Processing
Masaki Ota and Hiroshi Inomata

Food Safety and Quality

1. **IFRC 2017: 035-049**
 Toxigenic *Campylobacter jejuni* in Vegetables Farms and Retail Outlets in Terengganu
 Tang, J.Y.H., Khalid, M.I. and Radu, S.

2. **IFRC 2017: 037-024**
 Molecular Typing of *Bacillus cereus* Isolated from Sago Processing Mills in Sarawak.
 Jaraee J., Bilung M. L., Nolasco C. H. and Vincent M.

3. **IFRC 2017: 071-051**
 Variation of Microbial and Chemical Quality of Two Major Food Fishes in Sri Lanka with Gamma Irradiation.
 Surendra, I.H.W., Edirisinghe, E.M.R.K.B. and Rathnayake, R.M.N.P.

4. **IFRC 2017: 138-096**
 Shiga Toxin *Escherichia coli* Survival in Different Blending Ratio of Fresh Pineapple-Mango Juice Blends.
 Kamarul, Zaman, A.A., Shamsudin, R., Mohd Adzahan, N. and Sulaiman, A.

5. **IFRC 2017: 139-163**
 Ahmad, I. A., Abidin, U.F.U.Z., Mahyudin, N.A. and Ab-Rashid, N.K.

6. **IFRC 2017: 141-098**
 Effect of Poster and Video Intervention on The Knowledge, Attitude and Practice (KAP) Level of Personal Hygiene Among Food Handlers in 24 Hours Mamak Restaurants in Sungai Petani, Kedah.
 Masyita, M. and Nur Amalina, M.J.

7. **IFRC 2017: 146-106**
 Detection of Irradiated *Cucumis longa* and *Cariandrum sativum* Using Photo-stimulated Luminescence (PSL) Technique
 Ros Anita Ahmad Ramli, Ainul Hafiza Abdul Hair and Zainon Othman

8. **IFRC 2017: 148-107**
 Trace Level Determination of Organophosphorus Pesticides in Fruit Samples Using Tetramethylguanidine-Silica Nanoparticles as Solid Phase Extraction Sorbent.
 Veloo, K.V., Adam, F. and Batagarawa, M. S.
9. IFRC 2017: 149-149
Effect of Thickness of Antimicrobial Film-Coated Paper for Food Packaging on Antimicrobial Agent Migration Rate and Biodegradability.
Mustapha, F.A., Jai, J., Sharif, Z.I.M., and Yusof, N.M.

10. IFRC 2017: 152-168
Antioxidant Activity and Estragole Content Of Ethanolic and Methanolic Extract of Fennel (Foeniculum Vulgare Mill.) and Nutmeg (Myristica Fragrans Houtt) and its Risk Assessment Using Margin of Exposure (MOE).
Martati, E., and Akmalina, M.A.

11. IFRC 2017: 159-116
Selection of Lactic Acid Bacteria Can Reduce the Cyanide Compound on The Processing Yam Flour (Dioscorea Hispida Dennst.)
Winarti, S., Murtiningsih and Amalia, S.R.

Antimicrobial and Mechanical Properties of Gelatin Film Plasticized With Nigella Sativa (Black Seed Oil)
Han low, Ademola M Hammed, and Munirat A Idris

13. IFRC 2017: 168-124
Application of Hydroxyl Radical Aerosolization on E. coli/Coliform Reduction for Rapid Surface Disinfection in Food Processing
Boonchan, W., Chayasitthisophon, A., Foster, K.W., Weeranoppanant, N. and Thipayarat, A.

14. IFRC 2017: 178-143
Residual Heavy Metal and Bio-Accumulated Pesticide Estimation in Commonly Used Fish Food of Pakistan
Muhammad Danish, Yad-e-baiza, Maida Fatima, and Muhammad Waseem Mumtaz

15. IFRC 2017: 179-144
The Lipolytic Activity of Pseudomonas fluorescens BIOTECH 1123 in Commercially Available Salted Butter under Refrigerated Conditions and Its Relation to Product Quality Deterioration
Babaran, G.M.O., and Mopera, L.E.

16. IFRC 2017: 182-147
Quality Evaluation of Microwave and Conventional Pasteurised Pineapple Juice

17. IFRC 2017: 184-152
Development of Selective Esulin Hydrolysis Broth for Rapid Screening of Vibrio parahaemolyticus
Sangadkit, W., Deepatana, A. and Thipayarat, A.

18. IFRC 2017: 186-156
Evaluation of the Marketability, Microbial Quality, and Safety of Fresh-Cut Vegetable Mixes from Selected Wet Markets and Supermarkets in Los Baños, Laguna
Sotiangco, I.D.G., Piamonte, S.B.H. and Castillo-Israel, K.A.T.

Combined Ozonation and UV-C Treatment to Inactivate E. coli Contaminants in Model Fish Sauce
Sangadkit, W., Kunpanya, P., Deepatana, A., Foster, K.W. and Thipayarat, A.

20. IFRC 2017: 195-174
Case Study of Profiling of Adulterant in Tongkat Ali Herbal Product using Real Time Coupled with High Resolution Melting Analysis
N.F. Fadzil, A.Wagiran, F. Mohd Salleh and S. Abdullah
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahirah Mohamad, Shareena Ishak, Rohana Jaafar and Norrakiah Abdullah Sani</td>
<td></td>
</tr>
<tr>
<td>22. IFRC 2017: 216-202</td>
<td>Effects of Hydrocolloids on Physicochemical and Sensory Qualities of Noodles</td>
</tr>
<tr>
<td>Chiew, C.S. and Thed, S.T.</td>
<td></td>
</tr>
<tr>
<td>Mat Issa, Z. and Ab Rahim, N.F.</td>
<td></td>
</tr>
<tr>
<td>Zabidi N.Z.A., Zaaba S.K., Abidin N.S.A. and Rukunudin IH</td>
<td></td>
</tr>
<tr>
<td>26. IFRC 2017: 309-268</td>
<td>Antimicrobial Activity of Plant Extracts against Foodborne Pathogens</td>
</tr>
<tr>
<td>Mat Issa, Z., Othman, N., Mustakim, M. and Jipiu, L. B.</td>
<td></td>
</tr>
</tbody>
</table>

Food Processing and Post-Harvest Technology

| 27. IFRC 2017: 014-112 | Antifungal Activity of Aloe vera gel Towards the Pathogenic Fungus of Papaya Fruit |
| Mendy, T.K., Misran, A., Mahmud, T.M.M and Ismail, S.I |
| 28. IFRC 2017: 017-009 | Effect of Different Drying Methods on the Quality of Pink and Grey Oyster Mushrooms |
| Raseetha, S. and Siti-Nuramira, J. |
| 29. IFRC 2017: 027-142 | Supercritical Fluid Extraction of Date Seed Oil |
| 30. IFRC 2017: 036-023 | Effect of Heat Adaptation and Spray Drying Outlet Temperature on the Survival of Lactobacillus sp. Strain 3C2-10 |
| Kunnathep, J. and Oonsivilai, R. |
| 31. IFRC 2017: 044-029 | Influence of Maturity Stage of Rhizomes on the Physicochemical and Sensory Properties of Ginger (Zingiber officinale Roscoe) powder |
| Rabang, J.C.T. and Castillo-Israel, K.A.T. |
| 32. IFRC 2017: 047-047 | Development of an Artificially-Carbonated Fruit Wine Blend from Mango (Mangifera indica L.), Pineapple (Ananas comosus) and Passion Fruit (Passiflora edulis Sims) |
| Zubia C.S., Hurtada, W.A. and Dizon, E.I. |
33. IFRC 2017: 051-034
Development of Vegan Patties for Young Adults as a Source of Calcium using Tofu and Tempeh
Neo, Y.P., Au, J.E. and Tan, K.L.
34. IFRC 2017: 054-054
Production Process Technology and Its Characteristics of Probiotic Instant Chocolate Drink
Heny Herawati, Sri Yuliani, Widaningrum, Tatang Hidayat
35. IFRC 2017: 056-061
Effects of Virgin Coconut Oil on Qualities of Low Fat Pork Meatball
Oonmetta-eree, J.
36. IFRC 2017: 057-062
Rambutan (Nephelium lappaceum L.) Fruit Processing: Development of Preserve and Ice Cream
Rivadeneira, J., Juanico, C., Damaso, C., Espinut, R., Jolejole, T.K., Lanorio, M.C., Parani, M.S., San Juan, H.O., Sunico, D.J. and Sumague, M.J.
37. IFRC 2017: 058-063
Storage and Processing Stability of Natural Food Colorant from Philippine Wild Raspberry (Rubus rosifolius Linn.)
Palomeno, Jr., A.M. and Lizardo, R.C.M.
38. IFRC 2017: 065-069
Resistant Starch Content and Physico-Chemical Properties of Flour from ‘Saba’ and ‘Latundan’ Banana
(Musa sp.) Varieties
Mendoza, C.A.J.G. and Lizardo, R.C.M.
39. IFRC 2017: 066-070
Effect of Squid Ink Addition on the Physicochemical Properties and Acceptability of Noodle
Aishah, B., Maisarah, K. and Fadhilah, J.
40. IFRC 2017: 075-080
Effect of Extraction Temperature, pH, and Time on Pectin Yield of Katmon (Dillenia philippinensis Rolfe)
Belan, D.L. and Israel, K.A.C.
41. IFRC 2017: 114-119
Physicochemical Properties of Two Varieties of Rambutan (Nephelium lappaceum L.) Fruit
Chai, K.F., Karim, R., Adzahan, N.M., Rukayadi, Y. and Ghazali, H.M.
42. IFRC 2017: 121-126
Comparative Study on the Quality and Storage Stability of Instant Mashed Sweet Potato [Ipomea batatas (L) Lam] Prepared Using Three Different Varieties
Castillo-Israel, K.A.T., Perez, P.R.G. and Reginio, F.C., Jr.
43. IFRC 2017: 133-138
Potential of Canned and Pouched Adlai (Coix lacryma-jobi L.)- Duck (Anas platyrhynchos L.) Meat Congee as Emergency Relief Food
44. IFRC 2017: 141-146
Optimization of Oil, Whey Protein Concentrate and Carboxymethyl Cellulose Levels on Rheological Properties and Stability of Sky Fruit (Swietenia Macrophylla) Seed Oil-In-Water Emulsion
Nor Hayati, I., Chong, P.Y, and Yusof, H.M.
45. IFRC 2017: 120-078
Physical and Nutritional Properties of Malaysian Avocado (Persea americana Mill) Fruit
Tan, C.X., Chong, G.H., Hazilawati, H. and Ghazali, H.M.

46. IFRC 2017: 131-089
Determination of the Potential of Kamuning (Murraya paniculata) Flowers for Tea Development
Navarro, B.R.R. and Iñigo, H.B.R.

47. IFRC 2017: 134-092
Characteristic of Edible Film from Pectin of Citrus (Citrus Aurantifolia), Papaya (Carica papaya L.) and Latundan Bananas (Musa acuminate × M. balbisiana) Peel Wastes: A Comparative Study
Hapsari N., Rosida, D.F., Ramadhani, P.V., Sudaryati, D., Dewati, R.

48. IFRC 2017: 142-099
Effect of Maltodextrin, Tricalcium Phosphate and Glycerol Monostearate on Moisture Sorption Characteristics of Jamun (Syzygium cumini L.) Pulp Powder
Dey Paul, I., and Das, M.

49. IFRC 2017: 156-114
Optimization of Pretreatment Conditions and Drying Temperature in White Taro [Colocasia esculenta (L.) Schott] Flour Production
Lirio, A.L.C., Reginio, F.C., Jr., Ignacio, M.C.C. and Dantes, P.T.

50. IFRC 2017: 158-132
The Effect of Pectinase, Glucoamylase and Cellulase Enzymes on the Extraction Yield of Roselle Petals.
Mardiah, N., Novidahlia, Marifat Khoirunnisa, and Hanafi

51. IFRC 2017: 166-150
Effect of Emulsifier at Different Concentrations on the Properties and Characteristics of Biodegradable Films Based on Gelatin with Palm Oil for Food Packaging Application
Zazalli, S.A., Nabilah, B., de la Caba, K., Guerrero, P. and Nur Hanani, Z.A.

52. IFRC 2017: 170-126
Low Fat Coconut Flour as a Coconut Milk Powder Supplement for Improving Health and Reducing Cost of Product
Dharmasena, D. A. N., Herath, H.M.T.K. and Madujith, T.

53. IFRC 2017: 196-175
Optimization of Sweet Cassava (Manihot esculents crantz.) Crude Extract with High Maltodextrin Level Using Response Surface Methodology.
Posridee, K. and Oonsivilai, R.

54. IFRC 2017: 207-188
Effect of Gamma Irradiation and Different Packagings on the Shelf Life of Mushrooms Agaricus bisporus
Fartash, E., Khoshtaghaza, M. H., Abbasi, S

55. IFRC 2017: 211-194
Effect of Ultrasound Treatment on the Functional Properties of Jackfruit Seed Starch
Mohamad Yazid, N.S., Abdullah, N., Muhammad, N.

56. IFRC 2017: 212-196
Influence of Drying Methods on the Bioactive Compound and Antioxidant Activity of Pomelo Residue
Abd Rahman, N.F., Shamsudin, R., Ismail, A. Shah, N.N.A.K. and Varith, J.
57. IFRC 2017: 247-226
Development of Fish Gelatin Coatings Incorporated with Lemon Peel Extracts as Antimicrobial Packaging to Extend the Shelf Life of Flammulina velutipes.
L. Naphawan, Z.A Maryam Adilah, Z.A. Nur Hanani

58. IFRC 2017: 248-230
Non-Evaporative Method to Remove High Boiling Point Solvent (Ethyl Lactate) from Palm Oil Extract at Atmospheric Conditions
Kua, Y.L., Gan, S., Morris, A. and Ng, H.K.

59. IFRC 2017: 255-241
Effect of Aloe Vera Powder as Fat and Corn Flour Replacers in the Production of Reduced Fat Beef Meatballs

60. IFRC 2017: 259-272
Optimization of Natural Red Colorant Production from Roselle Using Ultrasound-Assisted Extraction

61. IFRC 2017: 277-254
Rheological Properties, Emulsion and Oxidative Stability of Cocoa Butter Based Salad Dressing During Storage
ishak, I., Hussain, N. and Mohd Hariri, N.A.

62. IFRC 2017: 279-255
Effect of Extraction Methods with Different Matrix for Gelatin Recovery and Properties: A Review
Ee, S. C. and Jamilah Bakar

63. IFRC 2017: 310-269
Comparison of Sensory Quality and Preference Between Fermented Barleys, Glutinous Rice and the Combination of Barley and Glutinous Rice

Functional Food

64. IFRC 2017: 017-010
Bioactive Compounds of Coffee Pulp and Cocoa Pod: Valorisation as Food Ingredient
Raseetha, S. and Raudzatul-Adawiyah, M. H.

65. IFRC 2017: 018-113
Ceri/Terengganu, Lepisanthes fruticosa the Rare Fruits of Malaysia, With New Potential.
Sukirah Abdul Rahman, Muhammad Anas Othaman, Nur Yuhasliza Abdul Rashid, Nur Diyana Alyas, Hazniza Adnan, Nor Hazniza Aziz and Musaalbakri Abdul Manan.

66. IFRC 2017: 029-018
Bioactive Compounds and Nutritional Properties of Khao-Mao
Singthong, J., Oonsivilai, R., Oonmetta-aree, J. and Onsaard, E.

67. IFRC 2017: 043-030
Comparative Analysis of The Nutrient Content and Antioxidant Activity Of Lagikway (Abelmoschus manihot L), Alugbati (Basella alba L), Camote (Ipomoea batatas L), and Saluyot (Corchorus capsularis L) Leaves
Algar, A.F.C. and Sediño, D.J.I.
Effect of Solvents on Extraction and Bioactive Properties of Commercial Grape Cultivars in Taiwan
Sridhar, K. and Charles, A.L.

Quality of Dried Rice Noodles Incorporated with Differently Encapsulated Carrot Powders
Ismail, H. Karim, R. and Muhammad, K.

Effect of Sago and Tapioca Starches on The Physicochemical Properties of Expanded Rice Products Coloured with Red Beetroot (Beta vulgaris) Powder
Abdul Alam, N.A., Karim, R. and Muhammad, K.

Anti-browning and Antioxidant Properties of Clinacanthus nutans (Burm. F.) Lindau on “Granny Smith” Apple Juice.
Husain N. F., Rahman R.A., and Suleiman N.

Prebiotic Potential of Oligosaccharides Derived From Kappaphycus alvarezii Using Microwave-Assisted Hydrolysis
Chan, S.T., Chye, F.Y. and Siew, C.K.

Antioxidant and Metabolite Identification of Different Varieties of Dates (Phoenix dactylifera L.)
Hana Kadum, Azizah Abdul Hamid, Faridah Abasa, Abdul Karim Sabo Mohammed, Nurul Shazini Ramli

Effectivity of Ethanol Extract of Purple Sweet Potato Var. Ayamurasaki as Natural Antihypertension in Doca-Salt Hypertensive Rats
Irma Sarita Rahmawati, Soetjipto, Annis Catur Adi, Aulanni’am

Chemical Composition And Physicochemical Properties Of Red Seaweeds (Kappaphycus alvarezii, Eucheuma spinosum and Eucheuma striatum) from Sabah, Malaysia

Quality Attributes of Malaysian Coconut Water (MATAG and MAWA)
Halim, H.H., Williams-Dee, E., Pak Dek, M.S., Hamid, A., Ahmad, N. and Jaafar, A.H.

Proximate Composition and Vitamins of Mangifera odarata from Fruit pulp and Peel
Nur Diyana Alyas, Muhammad Anas Othaman, Hazniza Adnan, Sukirah Abdul Rahman, and Nur Yuhasliza Abd Rashid and Norhazniza Aziz

Response Surface Optimization on the Total Phenolic Content and Antioxidant Activities of Sabah Snake Grass (Clinacanthus nutans) Leaves Peleg Kinetic Modelling Extract
Fazil, F.N.M., Azzimi, N.S.M. and Zubairi, S.I.

Insect Powder: A New Protein Source
Valenzuela, K.M. and Duque, S.M.
80. IFRC 2017: 124-166
Extracted Water Soluble Polysaccharide from Gum Arabic as Potential Prebiotic
Ahallil Hammad., Aminah Abdullah., Shahrul R. Sarbini and Mohamad Yusof Maskat

81. IFRC 2017: 129-212
Effect of Taste Genetic Determinants on Oral Fatty Taste Sensitivity and Perception among Obese and Non-Obese Subjects
Ahmad Riduan Bahauddin, Roselina Karim, Nazamid Shaari and Zalilah Mohd Shariff

82. IFRC 2017: 133-091
Antioxidant Activity of Tea Formulation of Leaves of Leucaena Leucocephala (Lam) de Wit, Soursop (Annona muricata L.) and Bay Leaf (Syzygium polyanthum) With Black Tea
Rosida, D.F., Putri, C.A., Murtiningsih

83. IFRC 2017: 135-094
Sabah Snake Grass (SSG) Pearls for Food Application
Kong, H. S., Mohd-Kasim, Z. and Abdullah Sani, N.

84. IFRC 2017: 137-122
Development of Convenient Fruit Bars as Sources of Dietary Fiber and Potassium from Thai Fruits
Racha Saiprasongsin, Visith Chavasit and Aurawan Kettawan

85. IFRC 2017: 160-117
Profile of Antioxidant in Dark Chocolate Product that Enriched with Herbs
Suprayatmi, M., Hutami, R., Tiastadia, I.P., Purnamasari, D

86. IFRC 2017: 162-119
Effect of Thermal Treatment on Total Phenolic Content and Antioxidant Activity of Garcinia atroviridis and Fenugreek Seed
Ummi Kalthum Ibrahim, Umrah Rashidah Dalip, Suzihaque, M.U.H., Syafiza Abd Hashib and Siti Fatma Abd Karim

87. IFRC 2017: 176-140
Inhibitory effects of mungbean soup on the enzymes and regulator related to type 2 diabetes
Saeting, O. and Sae-tan, S.

88. IFRC 2017: 188-157
Ovarian Histomorphological Changes in Rats Supplemented with Edible Bird’s Nest
Albishtue, A. A., Yimer, N., Zakaria, M.A., Haron, A.W., Rosnina, Y

89. IFRC 2017: 189-158
Effects of pH and Storage Temperature on the Stability of Encapsulated Anthocyanins from Red Dragon Fruit (Hylocereus polyrhizus (Weber) Britton & Rose)

90. IFRC 2017: 191-162
Total Phenolics, Flavonoids and Antioxidant Activity of Sudanese Baobab (Adansonia digitata) Fruit Pulp
Idris, Y.M. A., Ibraheem, S. A., Mustafa, S. E.and Kabeir, B. M

91. IFRC 2017: 223-210
Comparison of Sensory Quality and Preference between Fermented Barleys, Glutinous Rice and the Combination of Barley and Glutinous Rice
92. IFRC 2017: 231-216
Glycemic Index of Chocolate Fortified with Pumpkin (Cucurbita moschata) and Taro (Colocasia esculenta) Powder and its Effect on Mood and Cognitive Functions of Female students

93. IFRC 2017: 240-220
Chemical Composition of Mesocarp and Exocarp from Borassus flabellifer
Rodiah M. H., Jamilah B., Russly A. R., and Sharifah Kharidah S. M.

94. IFRC 2017: 244-224
Physico-chemical Properties of Spray Dried Powders from Two Varieties of Amaranth (Amaranthus viridis)
Siti Faridah, M.A., Tan, L.Y. and Muhammad, K.

95. IFRC 2017: 246-228
Investigation of Nutritional and Bio-active Properties of Selected Sri Lankan Marine Macro-algae
Wanasooriya, S.G.V.B., Jayawardana, B.C., Liyanage, N.L.B.R. and Nirooparaj, B.

96. IFRC 2017: 253-240
Comparative Evaluation of Total Phenolics, Total Flavonoids and Antioxidant Capacity of Dried Shrimp and Fermented Shrimp Products
Kaida, S.T., Rahmat, A. and Ramli, N.S.

97. IFRC 2017: 281-257
Effect of Germination Treatment in Amino Acids and Proteins Content of Jackfruit Seeds
I.Zuwariah, H. Hadijah, I.Aida Hamimi and R. Rodhiah

98. IFRC 2017: 284-261
Hypocholesterolemic Effect Of Dietary Fibre Powder From Pink Guava By-Product
Ibrahim A. H., Hassan H., Ismail A., Samad A.N., Nordin N.

Halal Food

99. IFRC 2017: 140-097
Perception of Food Sellers towards Halal Labelled Fish Ball in Kelantan
Zul Ariff Abdul Latiff, Mohamad Izwani Halim and Mohamad Amizi Ayob

100. IFRC 2017: 153-110
Halal Malaysia Brand Equity Mishap: False Recognition of Brand Mere Recognition using Implicit Association Test.
Wan Rusni Wan Ismail, Mohhidin Othman, Russly Abdul Rahman, Nitty Hirawaty Kamarulzaman and Suhaimi Ab. Rahman

101. IFRC 2017: 210-195
Do SMEs Halal Food Products Measure Up to Customer Expectation? : An Empirical Investigation
Abdul Salam, S. S., Othman, M., Ungku Zainal Abidin, U. F. and Kamarulzaman, N. A.

102. IFRC 2017: 224-217
Revisiting the Theory of Planned Behaviour (TPB) In Halal Food Purchasing: After the Case of Cadbury
Mohd Helmi Ali, Azman Ismail, Syed Shah Alam and Zafir Mohd Makhbul

103. IFRC 2017: 229-232
Muslim Consumers’ Awareness and Perception of Halal Food Fraud
Ruslan, A.A.A., Kamarulzaman, N.H and Sanny, M.
104. IFRC 2017: 230-227
Muslim Consumer’s Awareness and Acceptance on Halal Genetically Modified Food Labelling
Md Rapi, N.R., Kamarulzaman, N.H. and Ismail, N.W.

105. IFRC 2017: 258-244
Halal Assurance System (HAS) Cost Analysis Using Descriptive Quantitative Methods and Prevention, Appraisal, Failure (PAF) (Case Study at the Chicken Slaughterhouse Mitra Karya Unggas Batu East Java Indonesia)
Sucipto Sucipto, Riska A. Novita, Danang T. Setiyawan, Mas’ud Effendi and Retno Astuti

106. IFRC 2017: 273-252
Comparative Study Of Acid And Alkaline Pre-Treatment Process Prior To Gelatin Extraction From Rohu (Labeo Rohita) Scales

107. IFRC 2017: 205-192
Halal practices integrity and halal supply chain trust in Malaysian halal food supply chain
Kamisah, S., Mokhtar, A., and Hafsah, A.

Food Bioprocessing

108. IFRC 2017: 034-031
Survival, physicochemical properties and digestive stability of microencapsulated Lactobacillus spp. strains 21C2-10 in probiotic ice cream.
Sengsaengthong, S., Oonsivilai, R.

109. IFRC 2017: 045-039
Effects of different processing methods on hydroxycitric acid content of “batuan” [Garcinia binucao (Blanco) Choisy] fruits
Bainto, L.C., Dizon, E.I., Israel, K.A.C. and Laurena, A.C.

110. IFRC 2017: 125-085
Physical properties of heat treated purple potato (Solanum tuberosum cv. Shadow-Queen) flour
Santiago, D.M.O., Yamauchi H., Koaze H.

111. IFRC 2017: 104-093
Comparative study on the phytochemical and antioxidant properties of fermented jackfruit leaves (Artocarpus heterophyllus L.) leaves using single and mixed starter cultures
Norhazniza, A., Koh, S.P., Rosmawati A., Nur Syazwani, A.H., and Razali, M.

112. IFRC 2017: 107-167
Changes in Phenolic Content and Antioxidant Activity of Rice Bran by Aspergillus oryzae as Influenced by Different Initial Moisture Content

113. IFRC 2017: 221-206
Selection of Acetobacter Species Isolated from Fermented Cocoa Beans in Dong Nai Province for Their Potential Use as Starter Cultures
Vu T.L.A., Nguyen M.H., Phan T.H.

114. IFRC 2017: 114-215
Fermentation Characteristic of Kuini (Mangifera odorata) and Its Potential as Substrate to Acetic Acid Bacteria
Adnan, H., Othaman, M.A. and Alyas, N.D.
115. IFRC 2017: 271-250
Development of GABA Malted Milk Drink from Germinated Brown Rice
I.Zuwariah, I.Aida Hamimi, R. Rodhiah, and H. Hassan

Food Service and Management

116. IFRC 2017: 157-115
Pilot interviews of job satisfaction with offshore catering employee
Majid, M. A. A., Othman, M., Mohamad, S. F., and Lim, S. A. H.

117. IFRC 2017: 222-207
Identifying Possible Factors of Job Stress and Employees Intention to Leave a Job: A Case of Casual Typed Restaurant Employees in Johor Bahru.
Majid A., N., Ghazali, H. and Farahwahida, A.

118. IFRC 2017: 222-242
Initial Findings of Possible Factors Contribute to Job Stress among Casual Dining Restaurant Employees in Klang Valley, Malaysia.
Farahwahida, A. and Ghazali, H.

119. IFRC 2017: 256-264
Internship satisfaction factors and instruments: A review and research directions for the undergraduate hospitality programs
Ruslan, S., Mohamad, S.F., and Othman, M.

120. IFRC 2017: 276-251
A qualitative study on factors influencing older consumer dining out behaviour
Ganesan, L., Abu Bakar, A.Z., and Othman, M.

Others

121. IFRC 2017: 275-253
Hemicellulose Extraction and Characterization of Oil Palm Empty Fruit Bunches
Nor Nadiha, M.Z., Russly, A.B. and Jamilah, B.

Sponsors
Organizing committee
Foreword by the Vice Chancellor, Universiti Putra Malaysia

Assalamualaikum W.B.T. and greetings.

On behalf of Universiti Putra Malaysia, it gives me great pleasure to welcome all of you to the International Food Research Conference (IFRC 2017).

To mankind, food is the primary source of energy and therefore, life. Since time immemorial, mankind has exemplified ardent interest and creativity towards food creation and consumption which sprang solely from basic instinct and natural curiosity. This curiosity consequently gave birth to what the modernist would now call food research.

In Malaysia at present, the Government has made UPM as the centre of excellence for agricultural education and research to develop skilled manpower for the related industries. The dynamic food sector is thus considered the heartbeat of these industries. Therefore, to be able to face the emerging challenges in the food sector, the Faculty of Food Science and Technology (FSTM) is tasked to spearhead the development of human capital as well as the direction in food research and innovation. Among the approaches taken by FSTM is through the organisation of research conferences such as IFRC 2017. By aiming to disseminate the latest advancement and information in food researches, and also to elevate the industry-university collaboration to new heights, IFRC 2017 will certainly serve as the best platform by which the scientific and academic communities as well as the stakeholders could benefit from.

Congratulations to FSTM for their continuous effort in championing food-related disciplines both locally and internationally as reflected by the organisation of IFRC 2017. The great leap in ranking from 270th (2015) to 229th (2016) as published by the Quacquarelli Symonds’s (QS) World University Ranking is indeed the just outcome of the collective efforts taken by all faculties and entities in UPM.

To all IFRC 2017 participants, I would like to urge you to actively participate and engage in the three-day conference by contributing your ideas and insight. I sincerely hope that you will also have an enjoyable stay in Kuala Lumpur and get to experience the warmth of Malaysian hospitality.

‘WITH KNOWLEDGE WE SERVE’
Agriculture • Innovation • Life

PROF. DATIN PADUKA DR. AINI IDERIS, FASc
Vice Chancellor
Universiti Putra Malaysia
Foreword by the Dean, Faculty of Food Science and Technology

Assalamualaikum W.B.T and very good day.

On behalf of the Faculty of Food Science and Technology, I am truly delighted to welcome all of you to Universiti Putra Malaysia for the International Food Research Conference (IFRC 2017).

Food research is an important and well-established avenue to spearhead the food science and technology niche area. The food we consume on a daily basis is the result of extensive food research which is a systematic investigation into a variety of foods' properties and compositions. The investigation starts from the food components (macro– and microcomponents of foods, food biochemistry, nutrient changes in foods), to the preparation and technology involved (food processing, food engineering, food packaging, culinary), to the end products (sensory analyses, food safety and quality, functional food, new food development, food service) and ultimately to the dining table for our consumption. As the consumers’ knowledge, perception and preference expanded, so too has the food niche which now also includes food marketing, heritage food, halal food and so on. The organisation of the IFRC 2017 is hoped to achieve yet another milestone in bringing food researches to greater heights.

The theme appropriately selected for the IFRC 2017 is “Emerging Challenges in Food Research”. To that end, we are very fortunate to have several of the world’s leading researchers as our keynote and plenary speakers. I am positive that the IFRC 2017 will offer you a sound basis for academic discussions and the ensuing exchange of ideas. I therefore look forward to facilitating the invaluable dialogue among academics, researchers and market professionals in the spirit that such debate will only pave way to new and exciting approaches and technologies for the food industry.

I would also like to acknowledge the contribution of our co-organisers, supporters, and sponsors. Congratulations are also conveyed to the organising committee without whom the conference would have not been possible.

Lastly, I wish you all a fruitful and wonderful time at the IFRC 2017.

Best wishes,

PROF. DR. NAZAMID SAARI
Dean
Faculty of Food Science and Technology
Foreword by the IFRC 2017 Chairman

Assalamualaikum W.B.T. and good day.

After months of careful planning and preparation, finally the International Food Research Conference (IFRC 2017) is upon us. With nearly 300 participants from around 20 countries, the IFRC 2017 is now on full swing. Having been tailored to cater to wider audience from the food sector, the IFRC 2017, which encompasses the major food areas such as food processing and post-harvest technology, food bioprocessing, food safety and quality, functional food, food service and management, heritage food and halal food, is aimed to provide a platform on which we could face and respond to the emerging challenges in food research.

To our co-organiser, the Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños; and our supporters, the Malaysian Institute of Food Technology (MIFT) and the Associated Chinese Chambers of Commerce and Industry of Malaysia (ACCCIM), we extend our sincere gratitude and appreciation for the collaboration that makes the organisation of the IFRC 2017 possible. Credit also goes to all the invited speakers; Prof. Dr. Da-Wen Sun (University College Dublin, Ireland), Prof. Dr. Hiroshi Inomata (Tohoku University, Japan), and Prof. Dr. Farooq Anwar (University of Sargodha, Pakistan), for graciously sharing their vast knowledge and wisdom. Their years of experience in their respective fields are certainly an asset that will enrich the IFRC 2017.

To fellow academics, researchers, entrepreneurs, industry practitioners, and policy makers who participate in the IFRC 2017, I am entirely certain that you will all benefit from the arranged keynote and plenary speeches as well as the oral and poster presentations. To the organising committee, you have my endless admiration for your months of effort and energy poured into materialising the IFRC 2017. A job well done!

To our guests from abroad, have a pleasant stay in Malaysia!

Warm regards,

PROF. DR. RUSSLY ABDUL RAHMAN
Chairman
International Food Research Conference 2017
Selection of Lactic Acid Bacteria Can Reduce the Cyanide Compound on The Processing Yam Flour

(Dioscorea Hispida Dennst.)

Winarti, S., Murtiningsih and Amalia, S.R.

Food Technology Program, Engineering Faculty, University of Pembangunan Nasional “Veteran” Jawa Timur, Jl. Raya Rungkut Madya, Surabaya, Indonesia, 60294

Abstract
The study was carried out to select lactic acid bacteria can reduce effectively the cyanide compounds in the processing yam flour. Lactic acid bacteria used in the study were Lactobacillus plantarum FNCC-0027; Lactobacillus casei FNCC-90; Lactobacillus acidophilus FNCC-0051; Bifidobacterium bifidum BRL-130; Bifidobacterium breve BRL-131. Data were analyzed using One Way ANOVA and continued with Tukey’s test (HSD). Lactobacillus plantarum FNCC-0027 as lactic acid bacteria the most effectively reduced cyanide compound in the yam flour was of 41.98% for 24 hours. At 72 hours fermentation can reduce cyanide compound from 411.65 ppm to 23.917 ppm. This level of cyanide is safe. Reducing sugar of yam flour was 0.06%.

Keywords: cyanide, intoxicating yam, Dioscorea, Lactobacillus plantarum

*Corresponding author’s email: swin tpupn@yahoo.co

Introduction
The yam plant produce the tubers contain edible nutrients that are good enough, but its beneficial is limited. This is because in the yam tubers contain poisonous compounds, namely the Glycoside cyanogenic. Its compound is poisonous in the form of free acid cyanide (HCN). Removal of cyanide poison in yam tubers with traditionally method takes a long time so it is less efficient. These constraints can be overcome by fermentation using mushrooms or bacteria. Research conducted by Sasongko (2009), cyanide decrease from yam tuber 425.44 ppm into yam flour 21.74 ppm through fermentation with 15% concentration of fungus and 72 hours fermentation time. The effectiveness of cyanide reduction was 94.9%. Lactic acid bacteria play a role in the process of cyanide reduction such as Lactobacillus acidophilus L10, Lactobacillus casei L26 (Donkor and Shah, 2007); Lactobacillus plantarum pentosus FNCC 235 (Sumarna, 2010); Bifidobacterium longum 536 (Otieno, 2007).

The objective of the study is selective the most effective lactic acid bacteria and fermentation time can reduce cyanide in the processing of yam flour.

Material and Methods
3.1. Sample preparation
The sample used are the yam tubers from Mojokerto District, aquades, MRS broth, and lactic acid bacteria (Lactobacillus plantarum FNCC-0027, Lactobacillus casei FNCC-90, Lactobacillus acidophilus FNCC-0051, Bifidobacterium bifidum BRL-130, Bifidobacterium breve BRL-131) from Food and Nutrition Center, Gadjah Mada University, Yogyakarta.

Inoculum preparation: taken 100 μl of bacterium from ependoff, inoculated into MRS Broth medium 5 ml, incubated at 37°C for 24 hours. This study was conducted in 2 stages; stage I selection bacteria the most effective in reducing cyanide levels on the yam tubers, stage II determines the most optimal time to reduce cyanide levels at safe limits.

3.2. Selection of bacteria
Bacteria were selection for the most effective in reducing cyanide levels on the yam tubers, were done: yam tubers washed, peeling, size reduction as “sawut”, then fermentation for 24 hours at room temperature, laundering for running water, drying with cabinet dryer at 60°C at 17 hours, milling and sifting using an 80 mesh sieve.
3.3. Optimization of Fermentation Time

The "sawut" of yam tubers fermentation with the selected bacteria from the stage I at the time 24, 48 and 72 hours.

3.4. Data were analyzed using one-way ANOVA using SPSS version 16 (SPSS Inc., Chicago, Illinois, USA).

Results and Discussion

The results showed that total of Lactobacillus plantarum FNCC-0027 during the 24-hour fermentation was highest 11.071 log cfu/ml, whereas the lowest Bifidobacterium bifidum BRL-130 bacteria was 10.811 log cfu/ml (Figure 1).

Each lactic acid bacteria has different capabilities in utilizing nutrients in the medium of yam tubers. Increase the number of bacteria because in the raw material there is a source of nutrients needed by microorganisms for metabolism. Increasing the total number of bacteria, because LAB can be use the medium or hydrolyze sugar into simpler components to lactic acid, organic acids, CO₂, H₂O and energy (Retnaningtyas, et al. 2014).

The average of acidity degree (pH) on fermented tubers ranged from 3.95 to 4.1, whereas the degree of acidity (pH) in tubers without fermentation was 5.85 (Figure 2). Decrease of pH is due lactic acid bacteria able to break down starch and sugar in yam tuber into lactic acid during fermentation. Lactobacillus plantarum FNCC-0027 has the lowest pH lowering ability due to the highest total colonies (11.07 log cfu/ml) so that the ability to form lactic acid is greater. Lactic acid bacteria oxidize glucose to pyruvate and energy, wherein energy is used to reduce pyruvate to lactic acid (Sumarna, 2007).

Lactic acid bacteria had the ability to reduce cyanide on the yam tuber the ability of each type of bacteria was different (Figure 3). Cyanide content in control tuber (without fermentation) was 411.6465 ppm (db). Decreased cyanide levels are suspected because lactic acid bacteria have the ability to produce β-glucosidase enzymes capable of hydrolyzing cyanogenic glucoside compounds into water-soluble cyanide acid. According to Kobawila, et al. (2005) that lactic acid bacteria produce β-glucosidase enzymes that can eliminate cyanogenic glucosides. Lactobacillus plantarum FNCC-0027 is the most effective lactic acid bacteria in reducing cyanide in the yam tuber by fermentation. The effectiveness of cyanide reduction using Lactobacillus plantarum FNCC-0027 was 41.98% higher than Bifidobacterium bifidum BRL-130 of 24.67%. According to Meryandini, et al. (2011), Lactobacillus plantarum may produce β-glucosidase enzymes that can hydrolyze cyanogenic glucosides. The activity of β-glucosidase enzyme by Lactobacillus plantarum bacteria was 3.08 nM / mL/min (Kobawila, et al., 2005).

The results from stage 2, showed that the fermentation time had significant effect on the cyanide content on the yam flour. Fermentation 72 hours can reduce cyanide levels from 411.65 ppm (0 hours) to 23.92 ppm (Figure 4). Decreased cyanide during fermentation due Lactobacillus plantarum FNCC-0027 produce β-glucosidase enzyme capable to hydrolyzed cyanogenen glucoside into water-soluble cyanide acid. Sasongko (2009), that CN will be hydrolyzed by enzyme at acid condition. Meryandini, et al. (2011), Lactobacillus plantarum may produce β-glucosidase enzymes that can hydrolyze cyanogenic glucosides. Alshuhendra and Ridawati (2013) found, cyanogenic glucosides are hydrolyzed by β-glucosidase enzymes into sugars and cyanohydrin acetone and the cyanohydrin acetone is broken down by the hydroxynitrile liase enzyme into acetone and cyanide acid. This is showed that fermentation time had significant effect on the reducing sugar content of the yam flour. At the fermentation time 24 hours reduces the reducing sugar content, then rises again at 48 hours and 72 hours (Figure 5).

Figure 1: Total lactic acid bacteria in yam tubers after fermentation 24 hours. Values are the mean ± SD (n=3); mean value not significantly different (p<0.05) as measured by Duncan test.
Figure 2: pH score in yam tubers after fermentation 24 hours. Values are the mean ± SD (n=3); mean value not significantly different (p<0.05) as measured by Duncan test.

Figure 3: Cyanide content in yam flour after fermentation 24 hours. Values are the mean ± SD (n=3); mean value significantly different (p<0.05) as measured by Duncan test.

Figure 4: Cyanide in yam flour after fermentation 24, 48 and 72 hours. Values are the mean ± SD (n=3); mean value with different letter as significantly different (p<0.05) as measured by Duncan test.
Figure 5: Reduction sugar in yam flour after fermentation 24, 48 and 72 hours. Values are the mean ± SD (n=3); mean value with different letter as significantly different (p<0.05) as measured by Duncan test

Conclusion

Lactobacillus plantarum FNCC-0027 is the most effective bacteria can reduce the highest level of cyanide, so as selected lactic acid bacteria. Decrease of cyanide compound in the yam tuber 41.98% during 24 hours of fermentation. The level of cyanide in the yam flour at fermentation time 72 hours was 23.92 ppm (lower than 50 ppm). This content is safe level.

References

Organizing Committee

Advisor : Prof. Dr. Nazamid Saari (Dean, FSTM)
Chairman : Prof. Dr. Russly A. Rahman
Co-Chairman : Prof. Dr. Jamilah Bakar

Secretariat Committee
Head
Assoc. Prof. Dr. Chong Gun Hean

Members
Dr. Rabiha Sulaiman
Dr. Radhiah Shukri
Dr. Ungku Fatimah Ungku Zainal Abidin
Dr. Hazrina Ghazali
Dr. Nuzul Noorahya Jambari
Dr. Hanan Hasan
Dr. Masni Mat Yusoff
Dr. Noor Azira Binti Abdul Mutalib
Ms. Zainaf Udin
Ms. Zurainy Mohd Shariff
Ms. Wan Nur Ain Wan Ali

Technical Committee
Head
Prof. Dr. Azizah Hamid

Members
Prof. Dr. Russly A. Rahman
Prof. Dr. Hasanah Mohd. Ghazali
Prof. Dr. Jinap Selamat
Prof. Dr. Tan Chin Ping
Assoc. Prof. Dr. Mohhidin Othman
Prof. Dr. Son Radu
Assoc. Prof. Dr. Nor Ainy Mahyudin
Assoc. Prof. Dr. Yaya Rukayadi
Assoc. Prof. Dr. Olusegun Lasekan
Assoc. Prof. Dr. Ahmad Faizal Abdull Razis
Dr. Mohd Sabri Pak Dek
Dr. Chua Bee Lia
Dr. Katherine Ann C. Israel
Dr. Richard R. Navarro
Dr. Dennis Marvin O. Santiago

Finance Committee
Head
Assoc. Prof. Dr. Anis Shobirin Meor Hussin

Members
Dr. Norhasnida Zawawi
Dr. Rashidah Sukor
Pn. Norishah Saad
Mr. Muhd Muzaffar Iqbal Ismail

Fundraising Committee

Head : Assoc. Prof. Dr. Faridah Abas
Members :
 - Prof. Dato’ Dr. Mohd Yazid Abdul Manap
 - Prof. Dr. Nazamid Shaari
 - Prof. Dr. Tan Chin Ping
 - Assoc. Prof. Dr. Sharifah Kharidah Syed Muhammad
 - Assoc. Prof. Dr. Noranizan Mohd Adzahan
 - Dr. Maimunah Sanny
 - Dr. Norhayati Hussain
 - Pn. Suhaila Emma Merican
 - Mr. Hamezan Muhammad@Ahmad
 - Ms. Norlinawati Abd. Halim

Social Committee

Head : Assoc. Prof. Dr. Roselina Karim
Members :
 - Assoc. Prof. Dr. Muhammad Shahrim Abdul Karim
 - Assoc. Prof. Dr. Farinazleen Ghazali
 - Dr. Ismail Fitry Mohammad Rashedi
 - Dr. Nurul Shazini Ramli
 - Dr. Nik Iskandar Putra Samsudin
 - Dr. Sarina Abdul Halim Lim
 - Dr. Norhidayah Suleiman
 - Dr. Farah Adibah Che Ishak

Logistics Committee

Head : Dr. Wan Zunairah Wan Ibadullah
Members :
 - Dr. Nur Hanani Zainal Abedin
 - Dr. Nor Khaizura Mahmud @ Ab Rashid
 - Dr. Nor Afizah Mustapha
 - Dr. Ahmad Haniff Jaafar
 - Mr. Rusli Mohd Salleh
 - Mr. Mohd Hilmi Al_Hijri M. Lazim
 - Ms. Fatimatul Zuhra Ali

Promotion, IT and Website Committee

Head : Dr. Siti Fatimah Mohamad
Members :
 - Assoc. Prof. Badlishah Sham Baharin
 - Assoc. Prof. Dr. Seyed Hamed Mirhosseini
 - Dr. Ainul Zakiah Abu Bakar
 - Dr. Ahmad Fareed Ismail
 - Dr. Mohd Hafiz Abdul Rahim
 - Dr. Wan Melissa Wan Hassan