Proceeding
International Food Conference 2016
INNOVATION OF FOOD TECHNOLOGY TO
IMPROVE FOOD SECURITY AND HEALTH

October 20 – 21, 2016
Universitas Katolik Widya Mandala Surabaya
Surabaya – Indonesia

Organized by:
Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya
Perhimpunan Penggiat Pangan dan Nutrasetical Indonesia (P3FNI)
Indonesian Association of Food Technologists (PATPI) Chapter Surabaya

Supported by:
Asosiasi Profesi Keamanan Pangan Indonesia (APKEPI)
Pergizi Pangan Indonesia
Indonesian Society for Lactic Acid Bacteria (ISLAB)

Editors:
Indah Epriliati, S.TP., M.Si., Ph.D.
Ir. Indah Kuswardani, MP.
Dr. Ir. Anna Ingani W., MP.
Prof. Dr. Ir Y. Marsono, MS.
Prof. Dr. Endang Sutriswati R., M.Sc.

Prof. Ezekiel T. Otunola
Dr. Peter A. Sopade
Ir. Susana Ristiarini, M.Si.
Asst. Prof. Ekachai Chukeatirote, Ph.D.

Publisher:
Universitas Katolik Widya Mandala Surabaya
2017
Proceeding
International Food Conference 2016
INNOVATION OF FOOD TECHNOLOGY TO IMPROVE FOOD SECURITY AND HEALTH

October 20 – 21, 2016
Widya Mandala Catholic University Surabaya
Surabaya – Indonesia

Editors:
Indah Epriliati, S.TP., M.Si., Ph.D.
Ir. Indah Kuswardani, MP.
Dr. Ir. Anna Ingani W., MP.
Prof. Dr. Ir Y. Marsono, MS.
Prof. Dr. Endang Sutriswati R., M.Sc.

Prof. Ezekiel T. Otunola
Dr. Peter A. Sopade
Ir. Susana Ristiarini, M.Si.
Asst. Prof. Ekachai Chukeatirote, Ph.D.

Publisher
Universitas Katolik Widya Mandala Surabaya
Surabaya – Indonesia, 2017

National Library Republic of Indonesia

Copyright©2017
Universitas Katolik Widya Mandala Surabaya
2017
www.ukwms.ac.id
PREFACE

Honorable and Distinguished Guests, Ladies and Gentlemen,

First of all, I would like to thank God the Almighty Father, for pouring His grace and blessings upon our lives. Especially, on this very special occasion, Thursday, 20th October 2016, we all gather here on the 2nd International Food Conference 2016 with the following theme “Innovation of Food Technology to Improve Food Security and Health”. This great scientific event is held by the Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya (WMCUS), in collaboration with the Indonesian Association of Food Technologist (PATPI) Surabaya Chapter, P3FNI and is also supported by the Indonesian Society for Lactic Acid Bacteria (ISLAB), Pergizi Pangan Indonesia, and Asosiasi Profesi Keamanan Pangan Indonesia (APKEPI).

Therefore please allow me to express my sincerest gratitude and highest appreciation to all aforementioned parties which have actively expressed their strong care, commitment, and enthusiasm in handling various issues related to health promotion and well-being of the society through food consumption. This is, indeed, aligned with the theme of 56th Anniversary of WMCUS, namely “Together with all nation’s components, the University is strongly committed to establish a competitive Indonesian Golden Generation”.

I believe this scientific meeting will provide a great opportunity for researchers and industry practitioners to disseminate and discuss their latest research innovation and findings in the areas of food technology, health, and food securities. This will result in strategy formulation to overcome problems related to the above fields. I hope this meeting may also expand and strengthen the collaboration between academia and industry practitioners.

Through this important event, food technology may be proven to become one of important contributing factors in promoting the quality of human lives. Ultimately, our nation’s competitiveness will be enhanced and Indonesia will be more respected by other nations in the global era. May we continuously strive for excellence in our professional lives to serve the community at large so we may become the sign of God’s presence and love.

May God bless us all !

Surabaya, 20th October 2016

Rector

Drs. Kuncoro Foe, G.Dip.Sc., Ph.D.
INTRODUCTION TO THE SEMINAR

Honorable guests, ladies and gentlemen

First of all I would like to welcome you all in this beautiful city of Surabaya, Indonesia. We are delighted to have you here to meet and to share our knowledge, research, and discuss latest trend in the area of food technology and nutrition. The topics of our International Food Conference 2016 is “Innovation in food technology to improve food security and health” and this year is the second edition of the conference after successful first edition in 2011.

As we already aware that the field of Food Technology is growing rapidly and its development is making a great impact on the health and wellbeing of the society. Food technology covers wide range of area starting from the simplest food preservation such as sun drying, post harvest handling to reduce losses, to the advanced nanotechnology for functional food application. Therefore food technology has become one of the most important contributors in human life. Nowadays, food technology are not only intended to fulfill the foods needed for daily consumptions, but has also been an important factor playing role in combating health problems in the world. Research on health problems of the society has been polarized into two groups which are health problems because of malnutrition and health problems due to over nutrition and unbalanced dietary and lifestyle habit.

The aim of this conference is to provide forum for researcher and industries to disseminate their latest research innovation in food technology, health, and food security, create opportunities for researcher to discuss health and food security problems around the world as well as the strategy to manage such problems and also Strengthen the collaboration between universities and industries by designing an event for researcher and industries to gather and discuss opportunities for collaborations.

The participants including invited speakers are coming from different countries such as Australia, Malaysia, Vietnam, Italia, Nigeria, and Indonesia. There are total of 81 papers presented in both oral and poster presentation.

We would like to express our sincere gratitude to all of the invited speakers Ibu Tetty Sihombing from BPOM, Prof Son Radu, Dr. Peter Sopade, Prof. Endang Sutriswati, Prof. Hany Widjaja, Ir. Indah Kuswardani, Prof. Rindit Pambayun, Prof. Achmad Subagio, Prof. Anang Legowo, Dr. Tyas Utami, Dr. Agustin Wardani, Prof. Nuri Andarwulan, Mr. Lino Paravano, Prof Hardinsyah, and Prof. Marsono. We would like to express our gratitude to P3FNI and PATPI Surabaya for the assistance in preparation for this conference.
We would also like to thank our sponsors that made this event possible. Last but not least, I would like to thank all members of organizing committee for their full supports and commitments in preparing this conference. I wish that all of us will have a fruitful discussion and for all of you having a pleasant stay in Surabaya. Thank you.

Warm regards

Ignasius Radix AP Jati
Chair of Organizing Committee IFC 2016
CONTENTS

Preface .. iii

Introduction to the seminar.. iv

Contents... vi

Designing Program to Calculate Micronutrient Status and Recommendation:
A Case of Indonesia ... 1
Hans K. Biesalski

Mycotoxins Contamination in Food and Feed ... 5
Latiffah Zakaria

Food Processing and Product Properties, Focusing On Glycaemia 14
Peter A. Sopade

The Role and Mechanism of Resistant Starch (RS) in Reducing Plasma Glucose
Concentration ... 23
Y. Marsono

Equations Models to Estimate Basal Metabolic Rate Based on Body Weight
and Height of Indonesian Young Adults ... 29
Hardinsyah, Nisa Mawadaturrohmah, and Nikita Debora Putri

The difference on under nutrition children risks in mojowarno subdistrict, Jombang
Regency (Studies in Under and Normal Nutrition Children, Mother Nutritional
Knowledge Level, Energy-Protein Consumption and Protein Foods Quality) 35
Adelia Herine Fofid, I Nengah Tanu Komalyna, and Bernadus Rudy Sunindya

Variation of Seaweed Addition on the Nutritional Content of Cendol 44
Adriyani Adam and Nurbaya

Chemical Constituents of Ginger (Zingiber officinale Roscoe) Essential Oil and Its
Potency as Natural Preservative on Fresh Chicken Meat.. 51
Alwani Hamad, Muliastri Mentari, Asmiyenti Djaliasrin Djailil, and Dwi Hartanti

Instant Tiwul Made of Colocasia esculenta (L.) Schott as A Current Functional
Food Development for Hypercholesterolemic Patients.. 57
Ambar Fidyasari, Sentot Joko Raharjo, and Erik Widiarto

The Effect of Calcium Carbonate (CaCO₃) Concentration on the Physicochemical
and Organoleptic Properties of Black Rice-Lady Finger Banana Breakfast Cereal..... 65
Andrew Hartono and Thomas Indarto Putut Suseno

Texture of Cookies with Pregelatinization Time and Substitution Level
of Red Kidney Bean Flour ... 69
Anita Maya Sutedja, Chatarina Yayuk Trisnawati, and Ayu Anggraeni Handoko
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Evaluation of Lactobacillus plantarum Mut-7 as a Potential Indigenous Probiotic Strain Using Sprague Dawley Rats as a Model</td>
<td>Atika Yahdiyani Ikhsani, Emma Riftyan, Y. Marsono, Tyas Utami, Jaka Widada, and Endang S. Rahayu</td>
<td>76</td>
</tr>
<tr>
<td>The Effects of Washing on the Chemical Properties and Bacteria Content of Fermented Cassava (a Case Study in the Growol Rural Industry, Kalirejo Village, Kokap, Kulon Progo, DIY)</td>
<td>Chatarina Waryiah and Sri Luwihana</td>
<td>85</td>
</tr>
<tr>
<td>Effect of Egg Reduction and Xanthan Gum Concentration on the Physicochemical Properties of Reduced Fat Rice Cake</td>
<td>Chatarina Yayuk Trisnawati, Anita Maya Sutedja, Siti Kaniawati, and Johny Sutanto</td>
<td>91</td>
</tr>
<tr>
<td>Quercetin Encapsulation from Extract as a Natural Antioxidant with Emulsion Solvent Evaporation Method</td>
<td>Clarissa, Rita Arbianti, Tania Surya Utami</td>
<td>99</td>
</tr>
<tr>
<td>The Risk Factors of Incidence of Stunting on Children (1-2 Years) in Region of District Health Center Kokar, Alor Regency NTT</td>
<td>Dewi Natalian Lion, I Nengah Tanu Komalya, Tapriadi</td>
<td>108</td>
</tr>
<tr>
<td>Lipase from Mucor miehei as Biocatalysts for The Hydrolysis–Esterification Sequential Reaction of Coconut Oil in Natural Flavor Production</td>
<td>Dwina Moentamaria, Maria Angelina Suku, Khoirul Nuriasiah Herningrum, Via Siti Masluhah, Arief Widjaja, and Tri Widjaja</td>
<td>118</td>
</tr>
<tr>
<td>Effect of Unsaponifiable Fraction from Palm Fatty Acid Distillate on LDL/HDL Ratio of Hypercholesterolemia Rats</td>
<td>Emalia Rhiimayanti, Teti Estiasih, Kgs. Ahmadi, and Tri Dewanti Widyaningsih</td>
<td>124</td>
</tr>
<tr>
<td>Soft Bran of Sorghum Potential for High Fiber Supplement Food</td>
<td>Endang Noerhartati and Tri Rahayuningsih</td>
<td>131</td>
</tr>
<tr>
<td>Anti-Hypercholesterolemia Effect of Black Rice Bran in Male Winstar Rat</td>
<td>Fadjar Kurnia Hartati, Arlin Besari Dj., and M. Bambang Sigit S.</td>
<td>138</td>
</tr>
<tr>
<td>Nanoencapsulation of Andrographis paniculata Extract As Inhibitors Enzyme α-Glucosidase And In-Vitro Release Study</td>
<td>Farisa Imansari, Tania Suryani, and Rita Arbianti</td>
<td>144</td>
</tr>
<tr>
<td>Production Of Aspergillus Oryzae Crude Enzyme Based on Tofu Waste and Tapioca Dregs for Biotransformation of Salvianolic Acid B</td>
<td>Fhani Meliana, Tania Surya Utami, and Rita Arbianti</td>
<td>151</td>
</tr>
<tr>
<td>Utilization of Pregenerated Jackbean and Soybean For Increasing The Protein Content of Instant Tiwul</td>
<td>Friska Citra Agustia, Herastuti Sri Rukmini, and Rifda Naufalin</td>
<td>162</td>
</tr>
</tbody>
</table>
Competitive Advantage of Purse Liquid Sugar as Natural Sweeteners Materials ...170
Fungki Sri Rejeki, Diana Puspitasari, and Endang Retno Wedowati

Optimisation Process of Twin Screw Extruder Technology for Instant Artificial Rice Production ..180
Heny Herawati, Feri Kusnandar, Dede R. Adawiyah, and Slamet Budijanto

Gluten Free Noodle and Pasta Process Production Technology ...190
Heny Herawati and Sunarmani

Inactivation of Staphylococcus aureus GMP4 on Tofu with Pasteurization Process in Gamatahu KP4 UGM Yogyakarta ..197
Herni Purwantari, Aan Sofyan, Yudi Pranoto, Devi Yuni Susanti, Saiful Rochdyanto, and Endang Suniswati Rahayu

Optimization Alginat Extraction from Brown Algae (Sargassum polycystum)..207
Dougklas L. Wattimury and Hostalige Hutasoit

Effect of Carrageenan Concentration on Physicochemical and Organoleptic Characteristics of Mulberry (Morus nigra L.) Sheet Jam ...216
Kezia Samantha, Thomas Indarto P. S., and Adrianus Rulianto U.

Nanoencapsulation of Andrographis paniculata Extract as α-Glucosidase Inhibitors on the Formation of Hepatitis B Virus Envelope ..224
Khansa Zahrani, Tania Surya Utami, and Rita Arbiante

Comparative Investigation of Five Chilled Basic Taste Absolute Thresholds on Coastal and Inland Region: A Case Study at Tabanan Regency, Bali ..230
Kiki Fibrianto and Levy Indrawan Wicaksana

Gelatine from Cricket (Gryllus assimilis) through Acid Method, Characterization, and Application as Clarifier in Apple Juice Industry ...235
Lovitna Novia Puspitasari, Silviana Ike Setiawan, Rosalie Windy Maria, Suratno Lourentius, and Yohanes Sudaryanto

Characteristics of Baby Food Composed of Pre-Gelatinized Canna and Rice Flour ..241
Maria Matoetina Suprijono and Theresia Endang Widoeri Widyastuti

Modeling and Optimising Tensile Strength of Biodegradable Film as the Effect of Fungal Fermented Cassava (“Gathotan”) Flour ..247
Adje Darmawan, Novi Indah Permatasari, and Umi Purwandari

Sensory Properties and Antioxidant Activity of Steamed Rice with Various of Black and White Rice Ratio ..253
Oki Krisbianto, Mega Mustika, and Mary Astuti

Mold Contamination and Aflatoxin B₁ Levels in Salted Fish Commodities ...261
Rafli Zulfa Kamil, Yulius Damara Darma Putra, Andika Sidar, Widiastuti Setyaningsih, and Endang S. Rahayu
Physico-chemical Characteristics and Sensorial Attributes of Steamed Orange-Fleshed Sweet Potato Genotypes ...269
Rahmi Yulifanti, Erliana Ginting, and Joko Susilo Utomo

Characterization of Modified Corn Flour and Coarse Grits Using several soaking Treatments ...276
Ratnaningsih, Agus S. Somantri, and Dwi Amiarsi

Ethanol Producing Yeast Isolation from Indonesian Local Fruits for Ethanol Production ..280
Ryan Haryo SETYAWAN, Fahmi Irfan, Tyas Utami, Endang Sutriswati Rahayu, and Muhammad Nur Cahyanto

Conditions of Hygiene and Sanitation “Otak-Otak Bandeng” Production in Distric of Gresik ..285
Sri Handajani

The Physical Properties and Acceptability of Duck Meat Cured in Curcumin Extract with Added STPP ..293
Sri Hartati Candra Dewi, Chatarina Wariyah, and Niken Astuti

The Improvement of Nutritional Value of Analog Rice from Lesser Yam Tubers (Dioscorea Esculenta L.) Enriched with Soybean Flour ...300
Sri Winarti, Enny Karti Basuki Susiloningsih and Ramdan Hidayat

Do Indonesian Teenage and Young Adult Females Consume Foods Adequately?307
Wardina Humayrah, Hardinsyah, Ikeu Tanziha, and Umi Fahmida

The Effects of Cooking Methods on the Chemical (β-Carotene and Water Content), Physical (pH and Color) and Organoleptic (Color, Flavor, Texture) Characteristics of Papaya Leaf (Carica papaya, Linn) ..316
Yanesti Nuravianda Lestari, Roekistiningsih, and Nur Rahman

Effect of Gelatin and Sugar Concentration on the Characteristic of Panna Cotta327
Yohana Handani, Anita Maya Sutedja, and Chatarina Yayuk Trisnawati

Mineral Composition and Antioxidant Reducing Power of Green Algae Caulerparacemosa from Talango Islands, Indonesia ...333
Yushinta Aristina Sanjaya, Simon B. Widjanarko, Masruri, and Dwi Setijawati
The Improvement of Nutritional Value of Analog Rice from Lesser Yam Tubers (*Dioscorea esculenta* L.) Enriched with Soybean Flour

Sri Winarti¹, Enny Karti Basuki Susiloningsih¹ and Ramdan Hidayat²

¹Food Technology Program, Industrial Technology Faculty, University of Pembangunan Nasional “Veteran” Jawa Timur, Jl. Raya Rungkut Madya, Surabaya, Indonesia, 60294; Phone number: (031)8782179

²Faculty of Agriculture., University of Pembangunan Nasional “Veteran” Jawa Timur, Jl. Raya Rungkut Madya, Surabaya, Indonesia, 60294

Corresponding author E-mail: swin_tpupn@yahoo.com

Abstract

The research to produce of analog rice had been conducted in the previous year with extrusion techniques. The most preffered analog rice by consumers was made from the proportion of lesser yam: mocaf flour 90%-10% using 2% of carrageenan. In addition to the availability of rice as staple food, problem in Indonesian population is lack of protein intake, which lead to malnutrition especially in toddlers. One solution to fight malnutrition is adding important nutrients into food, which commonly called fortification. The fortification can be made by coating and premix/mixing. The fortifications by coating on the surface of the rice grains were judged ineffective because it would be lost when washed and soaked. Therefore, this research was done by fortification on analog rice by mixing with soybean flour. The aims of fortification is to improve the nutritional value of protein in analog rice produced. The addition of soybean flour on this research were 0%, 1%, 2%, 3%, 4% and 5%. The data obtained were analysis by ANOVA. If there was a noticeable difference between the treatments, further analysis with LSD (Least Significant Different Test) were carried out. The results in this research showed that increasing the addition of soybean flour can increase the nutritional value of protein in analog rice from 6.704% to 8.098%. The addition of soybean flour cause a decrease starch levels in analog rice from 85.582% to 84.108%, while increased amylose from 19.514% to 20.05% and declined of amylopectin from 66.069% to 64.057%; an increase of the rehydration power on analogue rice were found from 34.44% to 53.33%; an increase of expansion of volume were measured from 165.56% to 177.78%. The highest sensory score of analog rice was the treatment F3 wich the score of color is 3.35, taste is 2.95 and texture is 2.40.

Keywords: analog rice, fortification, lesser yam, soybean

Introduction

Lesser yam (*Dioscorea esculenta* L.) is one of the many local species of plants grow in various regions of Indonesia, and usually found as wild plant in the garden and in the forests. The tuber of this plant is usually utilized as a source of carbohydrate as an alternative of rice, but the utilization is still very limited. The superiority of lesser yam compared to other crops are easily grown on non-irrigated land and the critical land, without intensive farming and also can be grown as intercrops (Gsianturi, 2003).

Tubers are generally contain high levels of carbohydrates, but low protein content compare with cereals. Because of the high content of carbohydrates, these tubers known simply as a cheap source of calories. In addition to the primary function as a source of carbohydrate and calories, tubers are also contain bioactive compound and micronutrients.

Development of analog rice from lesser yam tubers is one effort to create an innovation based on
local food source available, and providing alternative food that is cheap and nutritious, so it can be beneficial to strengthen food self-sufficiency. Previous research that has been done were development of analog rice from lesser yam tubers using seaweed and carrageenan as ingredients (Winarti, et al., 2016a), as well as the development of analog rice using mocaf flour (Winarti, et al., 2016b). In this research, the analog rice was made from lesser yam tuber and were fortified with soybean flour to increase nutritional value of the product.

In addition to the availability of rice as staple food, problem which arise in Indonesian population is the lack of protein intake, leads to malnutrition especially in children. Solution to the problems is by adding nutrients into food, which commonly called as the fortification. The fortification can be made by coating and premix/mixing. The fortifications by coating on the surface of the rice grains were known as ineffective because it would be loss when washed and soaked. Thus, the fortification with the premix method becomes one of effective solutions.

The premix method can be applied in the processing of analog rice from lesser yam tubers which then the shape was recreated to be similar with rice. The substance used as fortification agents are trapped in the matrix of analog rice so that it is not lost on the process of leaching. In the process of production of analog rice, binding agent such as alginat, agar and carrageenan can be added for binding the nutrients substance.

The addition of carrageenan is expected to improve the texture of cooked analog rice to become more soft and sticky. The texture, appearance, flavor and color are important parameters and must be observed in the production of analog rice. Some of the ingredients that are added could affect the consumer preferences. The quality of the cooked rice also largely determined by the nature of the physico-chemical of rice such as temperature of starch gelatinization, the volume expansion, viscosity, water absorption and consisten cy of starch gelling (Purwani, 2001).

The research objective were to determine the effect of enrichment with soybean flour on nutritional quality and consumer preference of analog rice from lesser yam tubers.

Material and Methods

The main material used for this research was lesser yam tubers (Dioscorea esculenta L.) which was obtained from the Sawahan, Nganjuk region, East Java. Supporting materials were mocaf, corn starch, soybean flour and carragennan. Meanwhile, the equipment used in this research includes cabinet dryers, single screw extruder, disk mill, plastic strapping, vacuum sealer, soaking tub, strainers, cans and plastic tools.

The procedure of analog rice was as follows. In brief, lesser yam flour was mixed with other ingredients such as corn starch, mocaf flour, skim milk, vegetable oil and GMS. Then, different proportion of soybean flour were added at concentrations of 0%, 1%, 2%, 3%, 4% and 5% from the total weight of the dough and mixed thoroughly until homogeneous. The flour mixture/dough was then formed to granules of rice shaped analog with a single screw extruder (length 1.8 m, with diameter of 2mm) at a temperature of 100ºC. Analog rice were then dried at 60°C, for 24 hours.

Hedonic scale scoring test was used to evaluate the sensory quality of cooked analog rice with 20 consumers as panelists. Range value in this test was 1 until 5, in which 1 is dislike it very much to 5
which is like it very much.

Results and Discussion

Protein Content

The results in this research showed that the enrichment of soybean flour gave significant difference effects on protein levels of analog rice (p≤0.05). The increase of the amount of soybean flour added leads to increase the protein levels on analog rice. The results of the protein content on analog rice is presented in Table 4.1.

Table 4.1. The average of protein levels on analog rice which fortified with soybean flour.

<table>
<thead>
<tr>
<th>The addition of soybean flour (%)</th>
<th>Protein Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.704±0.06^a</td>
</tr>
<tr>
<td>1</td>
<td>6.809±0.02^b</td>
</tr>
<tr>
<td>2</td>
<td>7.456±0.01^c</td>
</tr>
<tr>
<td>3</td>
<td>7.906±0.02^d</td>
</tr>
<tr>
<td>4</td>
<td>8.051±0.02^e</td>
</tr>
<tr>
<td>5</td>
<td>8.098±0.03^e</td>
</tr>
</tbody>
</table>

Note: different letters following the values in each column indicates significantly different (p≤0.05)

From Table 4.1, it can be seen that the addition of soybean flour can significantly increase the levels of protein on analog rice. This is because soybean contains high levels of protein that is an average of 35% (Koswara, 2009). Moreover, for superior varieties of soybean, can contain protein levels of 40-50%.

Starch, Amylose and Amylopectin content

The result in this study show that levels of starch, amylose and amylpectin on analog rice from lesser yam tubers enriched with soybean flour are different. Starch, amylose and amylpectin content on analog rice is presented in Table 4.2.

Table 4.2. The average content of starch, amylose and amylpectin on analog rice fortified with soybean flour

<table>
<thead>
<tr>
<th>The addition of soybean flour (%)</th>
<th>Starch content (%)</th>
<th>Amylose content (%)</th>
<th>Amylopectin content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85.582±0.48^b</td>
<td>19.514±0.6^a</td>
<td>66.069±0.93^c</td>
</tr>
<tr>
<td>1</td>
<td>84.847±0.46^ab</td>
<td>19.549±0.31^c</td>
<td>64.798±0.87^abc</td>
</tr>
<tr>
<td>2</td>
<td>85.330±0.08^ab</td>
<td>19.581±0.25^a</td>
<td>65.749±0.17^b</td>
</tr>
<tr>
<td>3</td>
<td>84.432±0.34^ab</td>
<td>19.436±0.26^a</td>
<td>64.996±0.08^abc</td>
</tr>
<tr>
<td>4</td>
<td>84.627±0.04^ab</td>
<td>20.080±0.24^a</td>
<td>64.547±0.27^ab</td>
</tr>
<tr>
<td>5</td>
<td>84.108±0.28^a</td>
<td>20.051±0.07^a</td>
<td>64.057±0.21^a</td>
</tr>
</tbody>
</table>

Note: different letters following the values in each column indicates significantly different (p≤0.05)

The results showed that the addition of soybean flour can effect on the levels of starch, amylose and
Increasing the levels of soybean flour could significantly decrease the starch and amylopectin contents, though it was not significant for amylose levels (Table 4.2). This is because the material balance of the nutritional value in the ingredients of analog rice. The higher the percentage levels of proteins and other components in a material, leads to the lower the percentage levels of other materials, including the levels of starch. This is in accordance with the opinion of Winarno (2002), which states that the proportion of components in foodstuffs is in balance condition, if one of the components in a material increase then it will cause a decrease in the other components, and vice versa.

Composition of the starch are amylopectin and amylose, both are mutually inversely proportional, that is in food formulation, if the amylose content is increase, the amylopectin levels will decrease, and vice versa. This is in line with the results obtained in this research, which the levels of amylopectin in analog rice decreased by the increase of amylose content.

Rehydration Power

Rehydration power/water absorption of analog rice was determined to know the ability of the rice to absorb water when rice is cooked. Water absorption can also be used to predict the shelf life of analog rice and appropriate packaging methods. Water absorption is influenced by several factors, among others, long-chain of starch, the number of polar groups or hydroxyl groups, the surface area of powder and water content (Hariyadi, 2011).

The results in this study showed that the increase of soybean flour levels were responsible for the increase of the rehydration power, but not significantly different (Table 4.3.). This is due to the fact that the increase of soybean flour cause to the increase of amylose levels on analog rice. Amylose has ability to bind the water easily and also to release again, so analog rice with high amylose levels will easily absorbs water so that increased the rehydration power.

Tabel 4.3. The average of rehydration power on analog rice fortificated with soybean flour

<table>
<thead>
<tr>
<th>The addition of soybean flour (%)</th>
<th>Rehydration Power (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34.44±0.33a</td>
</tr>
<tr>
<td>1</td>
<td>33.33±0.67a</td>
</tr>
<tr>
<td>2</td>
<td>34.44±0.67a</td>
</tr>
<tr>
<td>3</td>
<td>35.56±0.33a</td>
</tr>
<tr>
<td>4</td>
<td>42.22±0.33a</td>
</tr>
<tr>
<td>5</td>
<td>50.33±0.67a</td>
</tr>
</tbody>
</table>

Note: different letters following the values in each column indicates significantly different (p≤0.05)

Expansion Volume

The expansion volume of analog rice is the ability of rice to swell after steaming. Expansion volume has an important role to the quality of analog rice. The mechanism of expansion of analog rice is when rice is soaked in water and heated, the rice will absorbs the water and the process of gelatinization of the starch is occurred. Starch properties can trap water to form a three-dimensional network. Therefore leads to the expansion of the volume.
The results from this research show that addition of soybean flour can increase the expansion volume on analog rice (Table 4.4), although do not significantly different. The increase of expansion volume could be caused by the denaturation process of protein from soybean flour when heated. When protein is denatured, it will form a three-dimensional gel which is capable of trapping the water. The protein also has the ability to spontaneously absorb water from the environment containing liquid/water absorption (Joon, 2011).

Table 4.4. The average of expansion volume on analog rice fortified with soybean flour

<table>
<thead>
<tr>
<th>The addition of soybean flour (%)</th>
<th>Expansion Volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>165.56±0.67^a</td>
</tr>
<tr>
<td>1</td>
<td>167.78±0.67^a</td>
</tr>
<tr>
<td>2</td>
<td>168.89±0.33^a</td>
</tr>
<tr>
<td>3</td>
<td>170.11±0.33^a</td>
</tr>
<tr>
<td>4</td>
<td>171.11±0.67^a</td>
</tr>
<tr>
<td>5</td>
<td>177.78±0.33^a</td>
</tr>
</tbody>
</table>

Note: different letters following the values in each column indicates significantly different (p≤0.05)

Sensory Quality

The quality of food can be measured by three parameters which are chemical, physical and sensory. The acceptance of food products by consumers is determined by many factors, especially sensory quality. Sensory properties are the properties of the materials scoring by human senses, namely the senses of sight, smell and taste.

The results showed that the highest preference of taste, texture and color of the cooked analog rice by consumer is the analog rice with 3% of soybean flour (Table 4.5). The addition of 3% of soybean flour can enhance the taste due the protein in soybean flour. The preference on texture could be due to the chewy texture of analog rice enriched with 3% of soybean flour. Heating of soybean protein caused the denaturation of proteins results in the formation of chewy texture. The relationship between the additions of soybean flour with the consumers preference are presented in Figure 4.1.

Table 4.5. Sensory quality on analog rice fortified with soybean flour

<table>
<thead>
<tr>
<th>The addition of soybean flour (%)</th>
<th>Average of Color</th>
<th>Average of Taste</th>
<th>Average of Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.75^ab</td>
<td>2.35^a</td>
<td>2.65^bc</td>
</tr>
<tr>
<td>1</td>
<td>2.45^a</td>
<td>2.65^a</td>
<td>2.30^ab</td>
</tr>
<tr>
<td>2</td>
<td>2.55^a</td>
<td>2.60^a</td>
<td>2.50^ab</td>
</tr>
<tr>
<td>3</td>
<td>3.35^b</td>
<td>2.95^a</td>
<td>3.40^c</td>
</tr>
<tr>
<td>4</td>
<td>2.65^bc</td>
<td>2.80^b</td>
<td>2.85^bc</td>
</tr>
<tr>
<td>5</td>
<td>2.95^bc</td>
<td>2.40^a</td>
<td>2.10^a</td>
</tr>
</tbody>
</table>

Note: different letters following the values in each column indicates significantly different (p≤0.05)
Conclusions

The results showed that the increase of soybean flour levels can increase the levels of protein, amylose, rehydration power and expansion volume of analog rice. Starch and amylopectin levels on analog rice from lesser yam tubers were decreased. The addition of 3% of soybean flour on analog rice is the most preferred by consumers.

Acknowledgements

Acknowledgements to Ministry of Research and Technology Directorate General of Higher Education that has funded this research through Prime Research College of 2014 to 2016.

References

Subagio, A. 2007. Industrialisasi Modified Cassava Flour (MOCAF) as raw material to Food Industry to support the diversification
of the national food staple. Food Technology Faculty, Jember University.

Winarti, S., E.Harmayani and R.Nurismanto. 2011. Ekstraction of inulin from various yam tubers (Dioscorea spp.), article was presented in AFC (Asian Food Conference), Bangkok 15-19 June 2011.

Winarti, S., Susiloningsih, E.K.B., and Hidayat, R. 2016. Substitution Effect of Mocaf (Modified Cassava Flour), Carrageenan and Seaweed on Properties of Analog Rice from Lesser Yam Tubers (Dioscorea esculenta L.). article was presented in FIAC (Food Innovation Asia Conference), Bangkok 16-18 June 2016.